NITs Cutoff 2026 for B.Tech Electrical Engineering - Opening & Closing Ranks

Inverse Matrix - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • Inverse of a Matrix, Properties of Inverse of a Matrix - Part 3 are considered the most difficult concepts.

  • Properties of Inverse of a Matrix - Part 1 are considered the most asked concepts.

  • 47 Questions around this concept.

Solve by difficulty

 Let A be any 3×3 invertible matrix.  Then which one of the following is not always true ?

Let A be a square matrix all of whose entries are integers. Then which one of the following is true?

Let A be a matrix such that $A \cdot\left[\begin{array}{ll}1 & 2 \\ 0 & 3\end{array}\right]$ is a scalar matrix and $|3 A|=108$. Then $\mathrm{A}^2$ equals :

If $A^2-4 A+5 I=0$. Then inverse of A is

$
\begin{aligned}
&I f A=\left[\begin{array}{lll}
0 & -1 & 2 \\
2 & -2 & 0
\end{array}\right], \quad B=\left[\begin{array}{ll}
0 & 1 \\
1 & 0 \\
1 & 1
\end{array}\right]\\
&\text { and } n=A B \text {, then } n^{-1} \text { is equal to }
\end{aligned}
$

Inverse of $\mathrm{A= \begin{bmatrix} 5 &1 \\ 2& 1 \end{bmatrix}}$  is

Let $\mathrm{A}$ be a $2 \times 2$ symmetric matrix such that $A\left[\begin{array}{l}1 \\ 1\end{array}\right]=\left[\begin{array}{l}3 \\ 7\end{array}\right]$ and the determinant of $A$ be 1 . If $A^{-1}=\alpha A+\beta I$, where $I$ is an identity matrix of order $2 \times 2$, then $\alpha+\beta$ equals $\ldots .$.

Amity University-Noida B.Tech Admissions 2026

Among top 100 Universities Globally in the Times Higher Education (THE) Interdisciplinary Science Rankings 2026

UPES B.Tech Admissions 2026

Ranked #43 among Engineering colleges in India by NIRF | Highest Package 1.3 CR , 100% Placements

IfA $=\left[\begin{array}{cc}1 & 2 \\ 3 & -5\end{array}\right]$, If $B=\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]$ and x is a matrix such that $A=b x$ then x equals to

Let $\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]$ be a square matrix of order 2 with entries either 0 or 1. Let E be the event that A is an invertible matrix. Then the probability $\mathrm{P}(\mathrm{E})$ is:

JEE Main 2026 Rank Predictor
Use the JEE Main 2026 Rank Predictor to estimate your expected rank based on your scores or percentile and plan your college options smartly.
Try Now

Find the inverse of the matrix $A B D C$. Where $A, B, C$ and $D$ are square matrix of order 3.

Concepts Covered - 5

Inverse of a Matrix

Inverse of a Matrix

A non-singular square matrix A is said to be invertible if there exists a non-singular square matrix B such that

$A B=I=B A$
and the matrix B is called the inverse of matrix A. Clearly, B should also have the same order as A.
Hence, $\mathrm{A}^{-1}=\mathrm{B} \Leftrightarrow \mathrm{AB}=\mathbb{I}_{\mathrm{n}}=\mathrm{BA}$

Formula for $\mathrm{A}^{-1}$
We know
$\mathrm{A}(\operatorname{adj} \mathrm{A})=|\mathrm{A}| \mathbb{I}_{\mathrm{n}}$
Multiplying both sides by $\mathrm{A}^{-1}$

$
\begin{aligned}
& \Rightarrow \mathrm{A}^{-1} \mathrm{~A}(\operatorname{adj} \mathrm{~A})=\mathrm{A}^{-1} \mathbb{I}_{\mathrm{n}}|\mathrm{~A}| \\
& \Rightarrow \mathbb{I}_{\mathrm{n}}(\operatorname{adj} \mathrm{~A})=\mathrm{A}^{-1}|\mathrm{~A}| \mathbb{I}_{\mathrm{n}} \quad\left(\text { As } A^{-1} \cdot A=I\right) \\
& \mathrm{A}^{-1}=\frac{\operatorname{adj} \mathrm{A}}{|\mathrm{~A}|}
\end{aligned}
$
Inverse of a $2 \times 2$ matrix
Let A is a square matrix of order 2

$
\mathrm{A}=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$
Then,

$
\mathrm{A}^{-1}=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]^{-1}=\frac{1}{\mathrm{ad}-\mathrm{bc}}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$


 

Inverse of a Matrix of order 3 using adjoint

To compute the inverse of matrix A of order 3 , first, check whether the matrix is singular or non-singular.
If the matrix is singular, then its inverse does not exist.
If the matrix in non-singular, then the following ar ethe steps to find the Inverse
We use the formula $A^{-1}=\frac{1}{|A|} \cdot \operatorname{adj}(A)$
1. Calculating the Matrix of Minors,
2. then turn that into the Matrix of Cofactors,
3. then take the transpose (These 3 steps give us the adjoint of matrix A)
4. multiply that by $1 /|\mathrm{A}|$.

 

 

 

Properties of Inverse of a Matrix - Part 1

Properties of inverse of a matrix:

1. Inverse of a matrix is unique

Proof:

Let $A$ be a square and non-singular matrix and let $B$ and $C$ be two inverses of matrix $A$

$
\begin{aligned}
& \mathrm{AB}=\mathrm{BA}=\mathbb{I}_n \text { (since } \mathrm{B} \text { is inverse of } \mathrm{A} \text { ) } \\
& \mathrm{AC}=\mathrm{CA}=\mathbb{I}_{\mathrm{n}} \text { (since } \mathrm{C} \text { is inverse of } \mathrm{A} \text { ) } \\
& \text { now, } \mathrm{AB}=\mathbb{I}_{\mathrm{n}} \\
& \mathrm{C}(\mathrm{AB})=\mathrm{CI}_{\mathrm{n}} \quad[\text { Multiplication by } \mathrm{C}] \\
& \text { (CA) } \mathrm{B}=\mathrm{CI}_{\mathrm{n}} \quad \text { [by associativity] } \\
& \mathbb{I}_{\mathrm{n}} \mathrm{~B}=\mathrm{CI}_{\mathrm{n}} \Rightarrow B=C
\end{aligned}
$
Hence an invertible matrix has a unique inverse.
2. If $A$ and $B$ are invertible matrices of order $n$, then $A B$ will also be invertible. and $(A B)^{-1}=B^{-1} A^{-1}$.

Proof:
A and B are invertible matrices, so $|A| \neq 0$ and $|B| \neq 0$
Hence, $|A||B| \neq 0 \Rightarrow|A B| \neq 0$
now, $(A B)\left(B^{-1} A^{-1}\right)=A\left(B B^{-1}\right) A^{-1} \quad[$ by associative law]

$
\begin{array}{ll}
=A\left(I_n\right) A^{-1} & {\left[\because \mathrm{BB}^{-1}=\mathrm{I}_{\mathrm{n}}\right]} \\
& =A A^{-1}=I_n
\end{array}
$

also, $\left(B^{-1} A^{-1}\right)(A B)=B^{-1}\left(A^{-1} A\right) B$
[by associative law]

$
\begin{aligned}
& =B^{-1}\left(I_n B\right) \quad\left[\because \mathrm{A}^{-1} \mathrm{~A}=\mathrm{I}_{\mathrm{n}}\right] \\
& =B^{-1} B=I_n
\end{aligned}
$

Thus, $(A B)\left(B^{-1} A^{-1}\right)=I_n=\left(B^{-1} A^{-1}\right)(A B)$
Hence, $(A B)^{-1}=B^{-1} A^{-1}$

 

Properties of Inverse of a Matrix - Part 2

Properties of Inverse of a Matrix

3. If A is an invertible matrix, then

$
\left(A^{\prime}\right)^{-1}=\left(A^{-1}\right)^{\prime}
$
Proof: As $A$ is an invertible matrix, so $|A| \neq 0 \Rightarrow\left|A^{\prime}\right| \neq 0$. Hence, $A^{\prime}$ is also invertible.
Now, $\mathrm{AA}^{-1}=\mathbb{I}_{\mathrm{n}}=\mathrm{A}^{-1} \mathrm{~A}$
Taking transpose of all three sides

$
\begin{aligned}
& \Rightarrow\left(\mathrm{AA}^{-1}\right)^{\prime}=\left(\mathbb{I}_{\mathrm{n}}\right)^{\prime}=\left(\mathrm{A}^{-1} \mathrm{~A}\right)^{\prime} \\
& \Rightarrow\left(\mathrm{A}^{-1}\right)^{\prime} \mathrm{A}^{\prime}=\mathbb{I}=\mathrm{A}^{\prime}\left(\mathrm{A}^{-1}\right)^{\prime} \\
& \left(\mathrm{A}^{\prime}\right)^{-1}=\left(\mathrm{A}^{-1}\right)^{\prime}
\end{aligned}
$

4. Let $A$ be an invertible matrix, then, $\left(A^{-1}\right)^{-1}=A$

Proof:
Let A be an invertible matrix of order n .

$
\begin{aligned}
& \text { As } A \cdot A^{-1}=I=A^{-1} \cdot A \\
& \Rightarrow \quad\left(\mathrm{~A}^{-1}\right)^{-1}=\mathrm{A}
\end{aligned}
$

5. Let $A$ be an invertible matrix of order $n$ and $k$ is a natural number, then $\left(A^k\right)^{-1}=\left(A^{-1}\right)^k=A^{-k}$

Proof:

$
\begin{aligned}
\left(\mathrm{A}^{\mathrm{k}}\right)^{-1} & =(\mathrm{A} \times \mathrm{A} \times \mathrm{A} \times \ldots \times \mathrm{A})^{-1} \\
& =\left(\mathrm{A}^{-1} \times \mathrm{A}^{-1} \times \mathrm{A}^{-1} \times \ldots \times \mathrm{A}^{-1}\right) \\
& =\left(\mathrm{A}^{-1}\right)^k
\end{aligned}
$
 

Properties of Inverse of a Matrix - Part 3

Properties of Inverse of a Matrix

6. Let A be an invertible matrix of order n , then

$
\left|\mathrm{A}^{-1}\right|=\frac{1}{|\mathrm{~A}|}
$
Proof: $\because \mathrm{A}$ is invertible, then $|\mathrm{A}| \neq 0$.
now, $\mathrm{AA}^{-1}=\mathbb{I}_{\mathrm{n}}=\mathrm{A}^{-1} \mathrm{~A}$

$
\begin{aligned}
& \Rightarrow\left|\mathrm{AA}^{-1}\right|=\left|\mathbb{I}_{\mathrm{n}}\right| \\
& \Rightarrow|\mathrm{A}|\left|\mathrm{A}^{-1}\right|=1 \\
& \Rightarrow\left|\mathrm{~A}^{-1}\right|=\frac{1}{|\mathrm{~A}|}
\end{aligned}
$

7. Inverse of a non-singular diagonal matrix is a diagonal matrix
if $A=\left[\begin{array}{lll}a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c\end{array}\right]$ and $|\mathrm{A}| \neq 0$
then

$
\mathrm{A}^{-1}=\left[\begin{array}{ccc}
\frac{1}{a} & 0 & 0 \\
0 & \frac{1}{b} & 0 \\
0 & 0 & \frac{1}{c}
\end{array}\right]
$
 

Study it with Videos

Inverse of a Matrix
Inverse of a Matrix of order 3 using adjoint
Properties of Inverse of a Matrix - Part 1

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Get Answer to all your questions