28 Questions around this concept.
Which of the following matrix can be obtained by elementary row/column matrix of $\left[\begin{array}{ccc}\sqrt{p}+\sqrt{q} & 2 & \sqrt{1} \\ \sqrt{q r}+\sqrt{2 p} & \sqrt{r} & \sqrt{2} \\ \sqrt{2 q}+\sqrt{p r} & \sqrt{2} & \sqrt{r}\end{array}\right]$
Which of the following matrix can be obtained row elementary row operation on $\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 5 & 0 \\ 2 & 4 & 3\end{array}\right]$
If $\mathrm{x}, \mathrm{y}, \mathrm{z}$ are all different from zero and $\left|\begin{array}{ccc}1+x & 1 & 1 \\ 1 & 1+y & 1 \\ 1 & 1 & 1+z\end{array}\right|=0 \quad$, then value of $x^{-1}+y^{-1}+z^{-1}$ is
JEE Main 2026: Preparation Tips & Study Plan | Previous 10 Year Questions
JEE Main 2026: 100 Days Study Plan | High Scoring Chapters and Topics | Preparation Tips
JEE Main 2025 Most Scoring Concept: January Session | April Session
Don't Miss: Best Public Engineering Colleges
On using elementary row operation R1→ R1 — 3R2 in the following matrix equation:
$\left[\begin{array}{ll} 4 & 2 \\ 3 & 3 \end{array}\right]=\left[\begin{array}{ll} 1 & 2 \\ 0 & 3 \end{array}\right]\left[\begin{array}{ll} 2 & 0 \\ 1 & 1 \end{array}\right]$
The matrix you will obtain after applying the following transformations (in order) to
$
\mathrm{A}=\left[\begin{array}{ll}
1 & 3 \\
4 & 2
\end{array}\right]_{\mathrm{is}}
$
1. $\mathrm{R}_1 \leftrightarrow \mathrm{R}_2$
2. $R_1 \rightarrow R_1-4 R_2$
3. $\mathrm{R}_1 \rightarrow \frac{\mathrm{R}_1}{2}$
Elementary Row Operations
Row transformation: The following three types of operation (Transformation) on the rows of a given matrix are known as elementary row operation (transformation).
i) Interchange of $i^{\text {th }}$ row with $j^{\text {th }}$ row, this operation is denoted by
$
R_i \leftrightarrow R_j
$
ii) The multiplication of $\mathrm{i}^{\text {th }}$ row by a constant $\mathrm{k}(\mathrm{k} \neq 0)$ is denoted by
$
\mathrm{R}_{\mathrm{i}} \leftrightarrow \mathrm{kR}_{\mathrm{i}}
$
iii) Adding of $\mathrm{i}^{\text {th }}$ row elements with of $\mathrm{j}^{\text {th }}$ row multiplied by constant $\mathrm{k}(\mathrm{k} \neq 0$ ) is denoted by
$
R_i \leftrightarrow R_i+k R_j
$
In the same way, three-column operations can also be defined.
Steps for finding the inverse of a matrix of order 2 by elementary row operations
Step 1: Write $A=I_n A$
Step II: Perform a sequence of elementary row operations successively on A on the LHS and the pre factor $I_n$ on the RHS till we obtain the result $I_n=B A$
Step III: Write $A^{-1}=B$
For example:
Given matrix $\mathrm{A}=\left[\begin{array}{cc}a & b \\ c & \left(\frac{1+b c}{a}\right)\end{array}\right]$, then to find the inverse of matrix A
We write,
$
\begin{aligned}
& {\left[\begin{array}{cc}
a & b \\
c & \left(\frac{1+b c}{a}\right)
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \mathrm{A}} \\
& \mathrm{R}_1 \rightarrow \frac{1}{\mathrm{a}} \mathrm{R}_1 \\
& {\left[\begin{array}{ll}
1 & \frac{b}{a} \\
c & \left(\frac{1+b c}{a}\right)
\end{array}\right]=\left[\begin{array}{ll}
\frac{1}{a} & 0 \\
0 & 1
\end{array}\right] \mathrm{A}} \\
& \mathrm{R}_2 \rightarrow \mathrm{R}_2-\mathrm{cR}_1 \\
& {\left[\begin{array}{ll}
1 & \frac{b}{q} \\
0 & \frac{1}{a}
\end{array}\right]=\left[\begin{array}{cc}
\frac{1}{a} & 0 \\
\frac{a}{a} & 1
\end{array}\right] \mathrm{A}} \\
& \mathrm{R}_2 \rightarrow \mathrm{aR}_2 \\
& {\left[\begin{array}{ll}
1 & \frac{b}{a} \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
\frac{1}{a} & 0 \\
-c & a
\end{array}\right] \mathrm{A}} \\
& \mathrm{R}_2 \rightarrow \mathrm{R}_1-\frac{\mathrm{b}}{\mathrm{a}} \mathrm{R}_2 \\
& {\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
\frac{1+b c}{a} & -b \\
-c & a
\end{array}\right] \mathrm{A}} \\
& \mathrm{~A}^{-1}=\left[\begin{array}{cc}
\frac{1+b c}{a} & -b \\
-c & a
\end{array}\right]
\end{aligned}
$
Algorithm for finding the lnverse of a Non singular 3 x 3 Matrix by Elementary Row Transformations
For example, to find the inverse of matrix A
$A=\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 1 & 2 \\ 3 & 1 & 1\end{array}\right]$
First write, A = IA
First write, $A=I A$
$
\Rightarrow\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 1 & 2 \\
3 & 1 & 1
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \mathrm{A}
$
Apply, $\mathrm{R}_3 \rightarrow \mathrm{R}_3-3 \mathrm{R}_1$
$
\Rightarrow\left[\begin{array}{ccc}
1 & 2 & 3 \\
0 & 1 & 2 \\
0 & -5 & -8
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
-3 & 0 & 1
\end{array}\right] \mathrm{A}
$
Apply, $\mathrm{R}_1 \rightarrow \mathrm{R}_1-2 \mathrm{R}_2$
$
\Rightarrow\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 2 \\
0 & -5 & -8
\end{array}\right]=\left[\begin{array}{ccc}
1 & -2 & 0 \\
0 & 1 & 0 \\
-3 & 0 & 1
\end{array}\right] \mathrm{A}
$
Apply, $\mathrm{R}_3 \rightarrow \mathrm{R}_3+5 \mathrm{R}_2$
$
\Rightarrow\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 2 \\
0 & 0 & 2
\end{array}\right]=\left[\begin{array}{ccc}
1 & -2 & 0 \\
0 & 1 & 0 \\
-3 & 5 & 1
\end{array}\right] \mathrm{A}
$
Apply, $\mathrm{R}_3 \rightarrow \frac{1}{2} \mathrm{R}_3$
$
\Rightarrow\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
1 & -2 & 0 \\
0 & 1 & 0 \\
\frac{-3}{2} & \frac{5}{2} & \frac{1}{2}
\end{array}\right] \mathrm{A}
$
Apply, $\mathrm{R}_1 \rightarrow \mathrm{R}_1+\mathrm{R}_3$
$
\Rightarrow\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
-\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\
0 & 1 & 0 \\
\frac{-3}{2} & \frac{5}{2} & \frac{1}{2}
\end{array}\right] \mathrm{A}
$
Apply, $\mathrm{R}_2 \rightarrow \mathrm{R}_2-2 \mathrm{R}_3$
$
\Rightarrow\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
-\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\
3 & -4 & -1 \\
\frac{-3}{2} & \frac{5}{2} & \frac{1}{2}
\end{array}\right] \mathrm{A}
$
Hence,
$
\mathrm{A}^{-1}=\left[\begin{array}{ccc}
-\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\
3 & -4 & -1 \\
\frac{-3}{2} & \frac{5}{2} & \frac{1}{2}
\end{array}\right]
$
"Stay in the loop. Receive exam news, study resources, and expert advice!"