VIT - VITEEE 2025
National level exam conducted by VIT University, Vellore | Ranked #11 by NIRF for Engg. | NAAC A++ Accredited | Last Date to Apply: 31st March | NO Further Extensions!
Cramer’s law is considered one the most difficult concept.
67 Questions around this concept.
The number of values of , for which the system of equations :
has no solution, is:
Consider the system of linear equations
The system has
If the system of linear equations
x+ay+z=3
x+2y+2z=6
x+5y+3z=b
has no solution, then :
JEE Main 2025: City Slip Link | Study Plan | Official Question Paper (Session 1)
JEE Main 2025: Sample Papers | Mock Tests | PYQs | High Scoring Topics | College Predictor
New: Meet Careers360 experts in your city and get guidance on shortlisting colleges
Apply to TOP B.Tech /BE Entrance exams: VITEEE | MET | AEEE | BITSAT
The system of linear equations
x +λy −z = 0
λx − y − z = 0
x + y − λz = 0
has a non-trivial solution for:
The set of all values of for which the system of linear equations :
has a non-trivial solution,
If S is the set of distinct values of ‘b’ for which the following system of linear equations
x+y+z=1
x+ay+z=1
ax+by+z=0
has no solution, then S is:
Find the value of p and q such that the system of linear equation has no solution.
$x+y+z=6, x+2 y+3 z=12, x+2 y+p z=q$
National level exam conducted by VIT University, Vellore | Ranked #11 by NIRF for Engg. | NAAC A++ Accredited | Last Date to Apply: 31st March | NO Further Extensions!
Ranked #42 among Engineering colleges in India by NIRF | Highest CTC 50 LPA , 100% Placements | Last Date to Apply: 28th March
Find the value of $x, y \& z$ of system of equation
$
x+y+z=9 ; 2 x+5 y+7 z=26 ; 2 x+y+z=0
$
Cramer’s law
For the system of equations in two variables:
Let $a_1 x+b_1 y=c_1$ and $a_2 x+b_2 y=c_2$, where
$
\frac{\mathrm{a}_1}{\mathrm{a}_2} \neq \frac{\mathrm{b}_1}{\mathrm{~b}_2}
$
On solving this equation by cross multiplication, we get
$
\begin{aligned}
& \frac{x}{b_2 c_1-b_1 c_2}=\frac{y}{a_1 c_2-a_2 c_1}=\frac{1}{a_1 b_2-a_2 b_1} \\
& \text { or } \frac{\mathrm{x}}{\left|\begin{array}{ll}
c_1 & b_1 \\
c_2 & b_2
\end{array}\right|}=\frac{\mathrm{y}}{\left|\begin{array}{ll}
a_1 & c_1 \\
a_2 & c_2
\end{array}\right|}=\frac{1}{\left|\begin{array}{ll}
a_1 & b_1 \\
a_2 & b_2
\end{array}\right|} \\
& \text { or } \mathrm{x}=\frac{\left|\begin{array}{ll}
c_1 & b_1 \\
c_2 & b_2
\end{array}\right|}{\left|\begin{array}{ll}
a_1 & b_1 \\
a_2 & b_2
\end{array}\right|}, \mathrm{y}=\frac{\left|\begin{array}{ll}
a_1 & c_1 \\
a_2 & c_2
\end{array}\right|}{\left|\begin{array}{ll}
a_1 & b_1 \\
a_2 & b_2
\end{array}\right|}
\end{aligned}
$
We can observe that the first column in the numerator of x is of constants and 2nd column in the numerator of y is of constants, and the denominator is of the coefficient of variables.
We can follow this analogy for the system of equations of 3 variables where the third column in the numerator of the value of z will be constant and the denominator will be formed by the value of coefficients of the variables.
For the system of equations in three variables:
Let us consider the system of equations
$
\begin{aligned}
& \mathrm{a}_1 \mathrm{x}+\mathrm{b}_1 \mathrm{y}+\mathrm{c}_1 \mathrm{z}=\mathrm{d}_1 \\
& \mathrm{a}_2 \mathrm{x}+\mathrm{b}_2 \mathrm{y}+\mathrm{c}_2 \mathrm{z}=\mathrm{d}_2 \\
& \mathrm{a}_3 \mathrm{x}+\mathrm{b}_3 \mathrm{y}+\mathrm{c}_3 \mathrm{z}=\mathrm{d}_3
\end{aligned}
$
then $\Delta$, which will be determinant of coefficient of variables, will be
$
\Delta=\left|\begin{array}{lll}
a_1 & b_1 & c_1 \\
a_2 & b_2 & c_2 \\
a_3 & b_3 & c_3
\end{array}\right|
$
$\Delta_1$ numerator of $x$ is :
$\Delta_1=\left|\begin{array}{lll}d_1 & b_1 & c_1 \\ d_2 & b_2 & c_2 \\ d_3 & b_3 & c_3\end{array}\right|$
Similarly $\Delta_2=\left|\begin{array}{lll}a_1 & d_1 & c_1 \\ a_2 & d_2 & c_2 \\ a_3 & d_3 & c_3\end{array}\right|$ and $\Delta_3=\left|\begin{array}{lll}a_1 & b_1 & d_1 \\ a_2 & b_2 & d_2 \\ a_3 & b_3 & d_3\end{array}\right|$
i) If $\Delta \neq 0$, then the system of equations has a unique finite solution and so equations are consistent, and solutions are $\mathrm{x}=\frac{\Delta_1}{\Delta}, \mathrm{y}=\frac{\Delta_2}{\Delta}, \mathrm{z}=\frac{\Delta_3}{\Delta}$
ii) If $\Delta=0$, and any of $\Delta_1 \neq 0$ or $\Delta_2 \neq 0$ or $\Delta_3 \neq 0$
Then the system of equations is inconsistent and hence no solution exists.
iii) If all $\Delta=\Delta_1=\Delta_2=\Delta_3=0$ then
System of equations is consistent and it has an infinite number of solutions (except when all three equations represent parallel planes, in which case there is no solution)
"Stay in the loop. Receive exam news, study resources, and expert advice!"