Amity University Noida B.Tech Admissions 2025
ApplyAmong Top 30 National Universities for Engineering (NIRF 2024)
Application of Inequality in Definite Integration is considered one of the most asked concept.
17 Questions around this concept.
Which of the following integrals has maximum value?
Let f be a differentiable function such that Then 18 f (3) is equal to :
$\int_{0}^{1}\sqrt{(1+x^2)(1+ x^3)}dx = I$. Which of the following is true?
New: JEE Main 2025 Admit Card OUT; Download Now
JEE Main 2025: Sample Papers | Syllabus | Mock Tests | PYQs | Video Lectures
JEE Main 2025: Preparation Guide | High Scoring Topics | Free Crash Course
Property 1
If f(x) ≤ g(x) ≤ h(x) for all x in [a, b], then
$\int_a^b f(x) d x \leq \int_a^b g(x) d x \leq \int_a^b h(x) d x$
As from the figure, Area of $A B D C \leq$ Area of $A B F E \leq$ Area of $A B H G$
Property 2
If m is the least value (global minimum) and M is the greatest value (global maximum) of the function f(x) on the interval [a, b], then
$\mathbf{m}(\mathbf{b}-\mathbf{a}) \leq \int_{\mathbf{a}}^{\mathbf{b}} \mathbf{f}(\mathbf{x}) \mathrm{dx} \leq \mathbf{M}(\mathbf{b}-\mathbf{a})$
Proof:
It is given that m ≤ f(x) ≤ M for all x in [a, b]
$\begin{array}{ll}\therefore & \int_a^b \mathrm{mdx} \leq \int_{\mathrm{a}}^{\mathrm{b}} \mathrm{f}(\mathrm{x}) \mathrm{dx} \leq \int_{\mathrm{a}}^{\mathrm{b}} \mathrm{M} \mathrm{dx} \\ \Rightarrow & \mathrm{m}(\mathrm{b}-\mathrm{a}) \leq \int_{\mathrm{a}}^{\mathrm{b}} \mathrm{f}(\mathrm{x}) \mathrm{dx} \leq \mathrm{M}(\mathrm{b}-\mathrm{a})\end{array}$
Property 3
$
\left|\int_{\mathrm{a}}^{\mathrm{b}} \mathrm{f}(\mathrm{x}) \mathrm{dx}\right| \leq \int_{\mathrm{a}}^{\mathrm{b}}|\mathbf{f}(\mathrm{x})| \mathrm{dx}
$
We know that, $\quad-|\mathrm{f}(\mathrm{x})| \leq \mathrm{f}(\mathrm{x}) \leq|\mathrm{f}(\mathrm{x})|, \forall \mathrm{x} \in[\mathrm{a}, \mathrm{b}]$
$
\begin{aligned}
& \therefore \quad-\int_a^b|\mathrm{f}(\mathrm{x})| \mathrm{dx} \leq \int_{\mathrm{a}}^{\mathrm{b}} \mathrm{f}(\mathrm{x}) \mathrm{dx} \leq \int_{\mathrm{a}}^{\mathrm{b}}|\mathrm{f}(\mathrm{x})| \mathrm{dx} \\
& \Rightarrow \\
& \quad\left|\int_{\mathrm{a}}^{\mathrm{b}} \mathrm{f}(\mathrm{x}) \mathrm{dx}\right| \leq \int_{\mathrm{a}}^{\mathrm{b}}|\mathrm{f}(\mathrm{x})| \mathrm{dx}
\end{aligned}
$
If $f^2(x)$ and $g^2(x)$ are integrable function on the interval $[a, b]$, then
$
\left|\int_a^b f(x) g(x) d x\right| \leq \sqrt{\left(\int_a^b f^2(x) d x\right)\left(\int_a^b g^2(x) d x\right)} .
$
Proof:
Let $\mathrm{F}(\mathrm{x})=\{\mathrm{f}(\mathrm{x})-\lambda \mathrm{g}(\mathrm{x})\}^2$, where $\lambda$ is a real number.
Since, $\{f(x)-\lambda g(x)\}^2 \geq 0$
So,
$
\begin{aligned}
& \int_a^b\{f(x)-\lambda g(x)\}^2 d x \geq 0 \\
\Rightarrow \quad & \int_a^b\left\{f^2(x)-2 \lambda f(x) g(x)+\lambda^2 g^2(x)\right\} d x \geq 0 \\
\Rightarrow \quad & \lambda^2 \int_a^b\left\{g^2(x)\right\} d x-2 \lambda \int_a^b\{f(x) g(x)\} d x+\int_a^b\left\{f^2(x)\right\} d x \geq 0
\end{aligned}
$
Discriminant is non positive, i.e. $\quad B^2-4 A C \leq 0$
$
\begin{aligned}
& \Rightarrow \quad 4 \lambda^2\left\{\int_a^b\{f(x) g(x)\} d x\right\}^2 \leq 4\left\{\lambda^2 \int_a^b\left\{g^2(x)\right\} d x\right\}\left\{\int_a^b\left\{f^2(x)\right\} d x\right\} \\
& \Rightarrow\left|\int_a^b f(x) g(x) d x\right| \leq \sqrt{\left(\int_a^b f^2(x) d x\right)\left(\int_a^b g^2(x) d x\right)}
\end{aligned}
$
"Stay in the loop. Receive exam news, study resources, and expert advice!"