Careers360 Logo
JEE Main Syllabus 2025 PDF (Out) for Physics, Chemistry, Maths

Application of Inequality in Definite Integration - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • Application of Inequality in Definite Integration is considered one of the most asked concept.

  • 16 Questions around this concept.

Solve by difficulty

Let f be a differentiable function such that   x^2 f(x)-x=4 \int_0^x t f(t) d t, f(1)=\frac{2}{3}    Then 18 f (3) is equal to :

Concepts Covered - 2

Application of Inequality in Definite Integration

Property 1

If f(x) ≤ g(x) ≤ h(x) for all x in [a, b], then

\mathbf{\int_{a}^{b}f(x)\;dx\leq\int_{a}^{b}g(x)\;dx\leq\int_{a}^{b}h(x)\;dx}

As from the figure, Area of ABDC  Area of ABFE  Area of ABHG

 

Property 2

If m is the least value (global minimum) and M is the greatest value (global maximum) of the function f(x) on the interval [a, b], then

\mathbf{m(b-a) \leq \int_{a}^{b} f(x)\; d x \leq M(b-a)}

Proof:

It is given that m ≤  f(x) ≤  M for all x in [a, b]

\\\mathrm{\therefore \;\;\;\;\;\;\;\;\;\int_{a}^{b}m\;dx \leq \int_{a}^{b} f(x)\; d x \leq\int_{a}^{b} M\;dx}\\\\\mathrm{\Rightarrow \;\;\;\;\;\;\;\;m(b-a) \leq \int_{a}^{b} f(x)\; d x \leq M(b-a)}

 

Property 3

\mathbf{\left |\int ^b_a f(x)dx \right |\leq\int^b_a \left | f(x) \right |dx}

\\\mathrm{We\;know\;that,\;\;\;-|f(x)|\leq f(x)\leq |f(x)|,\;\forall\;x\in[a,b]}\\\\\mathrm{\therefore \;\;\;\;\;\;\;\;\;-\int_{a}^{b}|f(x)|\;dx\leq \int_{a}^{b}f(x)\;dx\leq \int_{a}^{b}|f(x)|\;dx}\\\\\mathrm{\Rightarrow \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\left | \int_{a}^{b} f(x)\; d x \right |\leq\int_{a}^{b}\left | f(x) \right |\;dx}

Application of Inequality in Definite Integration (Schwarz - Bunyakovsky Inequality)

\\\mathrm{If\;f^2(x)\;and\;g^2(x)\;are \;integrable\;function\;on\;the\;interval\;[a,b],\;then}\\\\\left|\int_{a}^{b} f(x) g(x) d x\right| \leq \sqrt{\left(\int_{a}^{b} f^{2}(x) d x\right)\left(\int_{a}^{b} g^{2}(x) d x\right).}

Proof:

\\\mathrm{Let\;\;F(x)=\left \{ f(x)-\lambda g(x) \right \}^2,\;\;where \;\lambda\;is\;a\;real\;number.}\\\mathrm{Since,\;\;\left \{ f(x)-\lambda g(x) \right \}^2\geq0}\\\mathrm{So,}\\\mathrm{\;\;\;\;\;\;\;\;\;\;}\int_a^b\left \{ f(x)-\lambda g(x) \right \}^2dx\geq0\\\\\Rightarrow \mathrm{\;\;\;\;\;}\int_a^b\left \{ f^2(x)-2\lambda f(x)g(x)+\lambda^2g^2(x) \right \}dx\geq0\\\\\Rightarrow \mathrm{\;\;\;\;\;}\lambda^2\int_a^b\left \{ g^2(x) \right \}dx-2\lambda\int_a^b\left \{ f(x)g(x) \right \}dx+\int_a^b\left \{ f^2(x) \right \}dx\geq0\\\\\text{Discriminant is non positive, i.e. }\;\;B^2-4AC\leq0\\\\\Rightarrow \mathrm{\;\;\;\;}4\lambda^2\left \{ \int_a^b\left \{ f(x)g(x) \right \}dx \right \}^2\leq4\left \{ \lambda^2\int_a^b\left \{ g^2(x) \right \}dx \right \}\left \{ \int_a^b\left \{ f^2(x) \right \}dx \right \}\\\\\Rightarrow \mathrm{\;\;\;\;}\left|\int_{a}^{b} f(x) g(x) d x\right| \leq \sqrt{\left(\int_{a}^{b} f^{2}(x) d x\right)\left(\int_{a}^{b} g^{2}(x) d x\right).}

 

Study it with Videos

Application of Inequality in Definite Integration
Application of Inequality in Definite Integration (Schwarz - Bunyakovsky Inequality)

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Books

Reference Books

Application of Inequality in Definite Integration

Mathematics for Joint Entrance Examination JEE (Advanced) : Calculus

Page No. : 8.9

Line : 28

E-books & Sample Papers

Get Answer to all your questions

Back to top