20 Marks in JEE Main Percentile 2025 - Know Expected Percentile and Rank

Application of Even- Odd Properties in Definite Integration - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • Application of Even- Odd Properties in Definite Integration is considered one the most difficult concept.

  • Application of Periodic Properties in Definite Integration is considered one of the most asked concept.

  • 36 Questions around this concept.

Concepts Covered - 2

Application of Even- Odd Properties in Definite Integration

Property 7

$\int_{-a}^a f(x) d x=\left\{\begin{array}{cc}0, & \text { if } f \text { is an odd function } \\ \text { i.e. } f(-x)=-f(x) \\ 2 \int_0^a f(x) d x, & \text { if } f \text { is an even function } \\ \text { i.e. } f(-x)=f(x)\end{array}\right.$

Proof: 

$\begin{aligned} \int_{-\mathrm{a}}^{\mathrm{a}} \mathrm{f}(\mathrm{x}) \mathrm{d} \mathrm{x} & =\underbrace{\int_{-a}^0 f(x) d x}_{x=-t}+\int_0^{\mathrm{a}} \mathrm{f}(\mathrm{x}) \mathrm{dx} \\ & =\int_a^0 f(-t)(-d t)+\int_0^a f(x) d x \\ & =\int_0^a f(-x)(d x)+\int_0^a f(x) d x \\ & =\left\{\begin{array}{cc}-\int_0^a f(x) d x+\int_0^a f(x) d x, & \text { if } \mathrm{f}(\mathrm{x}) \text { is odd } \\ \int_0^a f(x) d x+\int_0^a f(x) d x, & \text { if } \mathrm{f}(\mathrm{x}) \text { is even }\end{array}\right. \\ & =\left\{\begin{array}{cc}0, & \text { if } f \text { is an odd function } \\ 2 \int_0^a f(x) d x, & \text { if } f \text { is an even function }\end{array}\right.\end{aligned}$

Proof using Graph

The graph of the odd function is symmetric about the origin, as shown in the above figure

So, if $\int_0^a f(x) d x=\alpha$ then, $\int_{-a}^0 f(x) d x=-\alpha$
$
\therefore \quad \int_{-a}^a f(x) d x=0
$

The graph of the even function is symmetric about the y-axis, as shown in the above figure

So, $\quad \int_{-a}^0 f(x) d x=\int_0^a f(x) d x=\alpha$
$
\therefore \quad \int_{-a}^a f(x) d x=2 \alpha=2 \int_0^a f(x) d x
$

Corollary:
$
\int_0^{2 a} f(x) d x=\left\{\begin{array}{cc}
2 \int_0^a f(x) d x, & \text { if } f(2 a-x)=f(x) \\
0, & \text { if } f(2 a-x)=-f(x)
\end{array}\right.
$

 

Application of Periodic Properties in Definite Integration

Property 9

If f(x) is a periodic function with period T, then the area under f(x) for n periods would be n times the area under f(x) for one period, i.e.

$\int_0^{n T} f(x) d x=n \int_0^T f(x) d x$

Proof:

Graphical Method

f(x) is a periodic function with period T. Consider the following graph of function f(x).

The graph of the function is the same in each of the intervals (0, T), (T, 2T), (2T, 3T) ……..

So,

$\begin{aligned} \int_0^{\mathrm{nT}} \mathrm{f}(\mathrm{x}) \mathrm{d} & =\text { total shaded area } \\ & =\mathrm{n} \times(\text { area in the interval }(0, \mathrm{~T})) \\ & =\mathrm{n} \int_0^{\mathrm{T}} \mathrm{f}(\mathrm{x}) \mathrm{dx}\end{aligned}$

Property 10

$\int_a^{a+n T} f(x) d x=\int_0^{a T} f(x) d x=n \int_0^T f(x) d x$

Proof:

Let, $\quad \mathrm{I}=\int_{\mathrm{a}}^{\mathrm{a}+\mathrm{nT}} \mathrm{f}(\mathrm{x}) \mathrm{dx}$
$
=\int_{\mathrm{a}}^0 \mathrm{f}(\mathrm{x}) \mathrm{dx}+\int_0^{\mathrm{nT}} \mathrm{f}(\mathrm{x}) \mathrm{dx}+\underbrace{\int_{n T}^{a+n T} f(x) d x}_{x=y+n T}
$
$\Rightarrow \mathrm{dx}=\mathrm{dy}$ and when $\mathrm{x}=\mathrm{nT}$ then $\mathrm{y}=0$ and $\mathrm{x}=\mathrm{a}+\mathrm{nT}, \mathrm{y}=\mathrm{a}$
$
\begin{aligned}
& \quad=\int_a^0 f(x) d x+\int_0^{n T} f(x) d x+\int_0^a f(y) d y \\
& \quad=n \int_0^{n T} f(x) d x \\
& {\left[\because \int_0^a f(y) d y=\int_0^a f(x) d x \text { and } \int_0^a f(x) d x=-\int_a^0 f(x) d x\right]}
\end{aligned}
$

Property 11
$
\int_{a+n T}^{b+n T} f(x) d x=\int_a^b f(x) d x
$

Property 12
$
\int_{\mathrm{mT}}^{\mathrm{nT}} \mathrm{f}(\mathrm{x}) \mathrm{dx}=(\mathrm{n}-\mathrm{m}) \int_0^{\mathrm{T}} \mathrm{f}(\mathrm{x}) \mathrm{dx}
$

Where ‘T’ is the period and m and n are Integers.

Study it with Videos

Application of Even- Odd Properties in Definite Integration
Application of Periodic Properties in Definite Integration

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Books

Reference Books

Application of Even- Odd Properties in Definite Integration

Mathematics for Joint Entrance Examination JEE (Advanced) : Calculus

Page No. : 8.22

Line : 23

Application of Periodic Properties in Definite Integration

Mathematics for Joint Entrance Examination JEE (Advanced) : Calculus

Page No. : 8.25

Line : 1

E-books & Sample Papers

Get Answer to all your questions

Back to top