Amity University Noida B.Tech Admissions 2025
ApplyAmong Top 30 National Universities for Engineering (NIRF 2024)
Angle of Intersection of Two Curves is considered one of the most asked concept.
18 Questions around this concept.
If curves $y=f(x)\; \; and\; \; y=g(x)$ are orthogonal at $(x_{1},y_{1}),$ then
The angle of Intersection of Two Curves
Let $y=f(x)$ and $y=g(x)$ be two curves intersecting at a point $P\left(x_0, y_0\right)$. Then the angle of intersection of two curves is defined as the angle between the tangent to the two curves at the point of intersection.
Let $\mathrm{PT}_1$ and $\mathrm{PT}_2$ be tangents to the curve $\mathrm{y}=\mathrm{f}(\mathrm{x})$ and $\mathrm{y}=\mathrm{g}(\mathrm{x})$ at their point of intersection.
Let $\Theta$ be the angle between two tangents $\mathrm{PT}_1$ and $\mathrm{PT}_2, \Theta_1$ and $\Theta_2$ are angles made by tangents $\mathrm{PT}_1$ and $\mathrm{PT}_2$ with the positive direction of x -axis, then
$
\begin{aligned}
& m_1=\tan \theta_1 \\
&=\left(\frac{d}{d x}(f(x))\right)_{\left(x_0, y_0\right)} \\
& m_2=\tan \theta_2 \\
&=\left(\frac{d}{d x}(g(x))\right)_{\left(x_0, y_0\right)}
\end{aligned}
$
from the figure $\theta=\theta_1-\theta_2$
$
\begin{aligned}
& \Rightarrow \tan \theta=\tan \left(\theta_1-\theta_2\right)=\frac{\tan \theta_1-\tan \theta_2}{1+\tan \theta_1 \cdot \tan \theta_2} \\
& \Rightarrow \tan \theta=\left|\frac{\left(\frac{\mathbf{d}}{\mathbf{d x}}(\mathbf{f}(\mathbf{x}))\right)_{\left(\mathbf{x}_{\mathbf{0}}, \mathbf{y}_{\mathbf{0}}\right)}-\left(\frac{\mathbf{d}}{\mathbf{d x}}(\mathbf{g}(\mathbf{x}))\right)_{\left(\mathbf{x}_{\mathbf{0}}, \mathbf{y}_{\mathbf{o}}\right)}}{\mathbf{1}+\left(\frac{\mathbf{d}}{\mathbf{d x}}(\mathbf{f}(\mathbf{x}))\right)_{\left(\mathbf{x}_{\mathbf{0}}, \mathbf{y}_{\mathbf{o}}\right)} \cdot\left(\frac{\mathrm{d}}{\mathbf{d x}}(\mathbf{g}(\mathbf{x}))\right)_{\left(\mathbf{x}_{\mathbf{0}}, \mathbf{y}_{\mathbf{o}}\right)}}\right|
\end{aligned}
$
Orthogonal Curves
If the angle of the intersection of two curves is a right angle then two curves are called orthogonal curves.
In this case, $\tan \theta=90^{\circ}$
$
\Rightarrow\left(\frac{d}{d x}(f(x))\right)_{\left(x_0, y_0\right)} \cdot\left(\frac{d}{d x}(g(x))\right)_{\left(x_0, y_0\right)}=-1
$
This is also the condition for two curves to be orthogonal.
Condition for two curves to touch each other
$
\left(\frac{d}{d x}(f(x))\right)_{\left(x_0, y_0\right)}=\left(\frac{d}{d x}(g(x))\right)_{\left(x 0, y_0\right)}
$
"Stay in the loop. Receive exam news, study resources, and expert advice!"