Amity University Noida B.Tech Admissions 2025
ApplyAmong Top 30 National Universities for Engineering (NIRF 2024)
Component of vector and Vector Joining Two Points is considered one of the most asked concept.
13 Questions around this concept.
What is position vector of point P(-1,5,7) ?
What is projection of $\vec{b}$ on $\vec{a}$ if $\vec{a} \cdot \vec{b}=2$ and $|\vec{a}|=3$ ?
What is $|\overrightarrow{O P}|_{\text {if } \mathrm{P} \text { is }}(2,-1,2 \sqrt{5}) ?$
New: JEE Main 2025 Admit Card OUT; Download Now
JEE Main 2025: Sample Papers | Syllabus | Mock Tests | PYQs | Video Lectures
JEE Main 2025: Preparation Guide | High Scoring Topics | Free Crash Course
If vector $2 \vec{i}+3 \vec{j}-2 \vec{k}$ and $\vec{i}+2 \vec{j}+\vec{k}$ represents the adjacent sides of any parallelogram then the lenght of diagonal of parallelogram are
Let $O$ be the origin and the position vectors of $A$ and $B$ be $2 \hat{i}+2 \hat{j}+\hat{k}$ and $2 \hat{i}+4 \hat{j}+4 \hat{k}$ respectively. If the internal bisector of $\angle A O B$ meets the line $A B$ at $C$, then the length of $O C$ is
Let the points A(1, 0, 0), B(0, 1, 0) and C(0, 0, 1) on the x-axis, y-axis and z-axis, respectively. Then, clearly,$|\overrightarrow{\mathrm{OA}}|=1,|\overrightarrow{\mathrm{OB}}|=1$ and $|\overrightarrow{\mathrm{OC}}|=1$
The vectors, $\overrightarrow{O A}, \overrightarrow{O B}$ and $\overrightarrow{O C}$ each having magnitude 1, are called unit vectors along the axes $O X$, $O Y$, and $O Z$, respectively, and denoted by $\hat{\mathbf{i}}, \hat{\mathbf{j}}$, and $\hat{\mathbf{k}}$ respectively.
Now consider any point $\mathrm{P}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ with position vector OP . Let $\mathrm{P}_1$ be the foot of the perpendicular from P on the plane XOY . As we observe that $P_1 P$ is parallel to the z-axis. Also, $\hat{\mathbf{i}}, \hat{\mathbf{j}}$, and $\hat{\mathbf{k}}$ are the unit vectors along the $x, y$, and $z$-axes, respectively, thus, by the definition of the coordinates of P, we have $\overrightarrow{\mathrm{P}_1 \mathrm{P}}=\overrightarrow{\mathrm{OR}}=z \hat{\mathbf{k}}$.
Similarly, $\overrightarrow{\mathrm{QP}_1}=\overrightarrow{\mathrm{OS}}=y \hat{\mathbf{j}}$ and $\overrightarrow{\mathrm{OQ}}=x \hat{\mathbf{i}}$
Therefore,
$
\begin{aligned}
& \overrightarrow{\mathrm{OP}_1}=\overrightarrow{\mathrm{OQ}}+\overrightarrow{\mathrm{QP}_1}=x \hat{i}+y \hat{j} \\
& \overrightarrow{\mathrm{OP}}=\overrightarrow{\mathrm{OP}_1}+\overrightarrow{\mathrm{P}_1 \mathrm{P}}=x \hat{i}+y \hat{j}+z \hat{k}
\end{aligned}
$
and,
Hence, the position vector of P with reference to O is given by
$
\overrightarrow{\mathrm{OP}}(\text { or } \vec{r})=x \hat{i}+y \hat{j}+z \hat{k}
$
And, the length of any vector $\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}$ is given by
$
|\vec{r}|=|x \hat{i}+y \hat{j}+z \hat{k}|=\sqrt{x^2+y^2+z^2}
$
Vector Joining Two Points
If $\mathrm{A}\left(\mathrm{x}_1, \mathrm{y}_1, \mathrm{z}_1\right)$ and $\mathrm{B}\left(\mathrm{x}_2, \mathrm{y}_2, \mathrm{z}_2\right)$ are any two points in three - dimensional system, then vector joining point A and B is the vector $\overrightarrow{A B}$.
Joining the point A and B with the origin, O , we get position vector of point A and B . i.e.
$
\begin{aligned}
& \overrightarrow{O A}=x_1 \hat{i}+y_1 \hat{j}+z_1 \hat{k} \\
& \overrightarrow{O B}=x_2 \hat{i}+y_2 \hat{j}+z_2 \hat{k}
\end{aligned}
$
Applying the triangle law of addition on the triangle $O A B$
$
\overrightarrow{O A}+\overrightarrow{A B}=\overrightarrow{O B}
$
Using the properties of vector addition, the above equation becomes
$
\overrightarrow{A B}=\overrightarrow{O B}-\overrightarrow{O A}
$
i.e.
$
\begin{aligned}
\overrightarrow{A B} & =\left(x_2 \hat{i}+y_2 \hat{j}+z_2 \hat{k}\right)-\left(x_1 \hat{i}+y_1 \hat{j}+z_1 \hat{k}\right) \\
& =\left(x_2-x_1\right) \hat{i}+\left(y_2-y_1\right) \hat{j}+\left(z_2-z_1\right) \hat{k}
\end{aligned}
$
The magnitude of vector $\overrightarrow{A B}$ is given by
$
|\overrightarrow{A B}|=\sqrt{\left(\mathrm{x}_2-\mathrm{x}_1\right)^2+\left(\mathrm{y}_2-\mathrm{y}_1\right)^2+\left(\mathrm{z}_2-\mathrm{z}_1\right)^2}
$
"Stay in the loop. Receive exam news, study resources, and expert advice!"