Amity University Noida B.Tech Admissions 2025
ApplyAmong Top 30 National Universities for Engineering (NIRF 2024) | 30+ Specializations | AI Powered Learning & State-of-the-Art Facilities
Component of vector and Vector Joining Two Points is considered one of the most asked concept.
15 Questions around this concept.
What is position vector of point P(-1,5,7) ?
What is projection of $\vec{b}$ on $\vec{a}$ if $\vec{a} \cdot \vec{b}=2$ and $|\vec{a}|=3$ ?
What is $|\overrightarrow{O P}|_{\text {if } \mathrm{P} \text { is }}(2,-1,2 \sqrt{5}) ?$
New: JEE Main 2025 Session 1 Result OUT; Check Now | Rank Predictor
JEE Main 2025: College Predictor | Marks vs Rank vs Percentile | Top NITs Cutoff
JEE Main 2025: January Session Official Question Paper for All Shifts | Exam Analysis
JEE Main 2025: High Scoring Topics | Sample Papers | Mock Tests | PYQs
If vector $2 \vec{i}+3 \vec{j}-2 \vec{k}$ and $\vec{i}+2 \vec{j}+\vec{k}$ represents the adjacent sides of any parallelogram then the length of diagonal of parallelogram are
Let $O$ be the origin and the position vectors of $A$ and $B$ be $2 \hat{i}+2 \hat{j}+\hat{k}$ and $2 \hat{i}+4 \hat{j}+4 \hat{k}$ respectively. If the internal bisector of $\angle A O B$ meets the line $A B$ at $C$, then the length of $O C$ is
Let the points A(1, 0, 0), B(0, 1, 0) and C(0, 0, 1) on the x-axis, y-axis and z-axis, respectively. Then, clearly,$|\overrightarrow{\mathrm{OA}}|=1,|\overrightarrow{\mathrm{OB}}|=1$ and $|\overrightarrow{\mathrm{OC}}|=1$
The vectors, $\overrightarrow{O A}, \overrightarrow{O B}$ and $\overrightarrow{O C}$ each having magnitude 1, are called unit vectors along the axes $O X$, $O Y$, and $O Z$, respectively, and denoted by $\hat{\mathbf{i}}, \hat{\mathbf{j}}$, and $\hat{\mathbf{k}}$ respectively.
Now consider any point $\mathrm{P}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ with position vector OP . Let $\mathrm{P}_1$ be the foot of the perpendicular from P on the plane XOY . As we observe that $P_1 P$ is parallel to the z-axis. Also, $\hat{\mathbf{i}}, \hat{\mathbf{j}}$, and $\hat{\mathbf{k}}$ are the unit vectors along the $x, y$, and $z$-axes, respectively, thus, by the definition of the coordinates of P, we have $\overrightarrow{\mathrm{P}_1 \mathrm{P}}=\overrightarrow{\mathrm{OR}}=z \hat{\mathbf{k}}$.
Similarly, $\overrightarrow{\mathrm{QP}_1}=\overrightarrow{\mathrm{OS}}=y \hat{\mathbf{j}}$ and $\overrightarrow{\mathrm{OQ}}=x \hat{\mathbf{i}}$
Therefore,
$
\begin{aligned}
& \overrightarrow{\mathrm{OP}_1}=\overrightarrow{\mathrm{OQ}}+\overrightarrow{\mathrm{QP}_1}=x \hat{i}+y \hat{j} \\
& \overrightarrow{\mathrm{OP}}=\overrightarrow{\mathrm{OP}_1}+\overrightarrow{\mathrm{P}_1 \mathrm{P}}=x \hat{i}+y \hat{j}+z \hat{k}
\end{aligned}
$
and,
Hence, the position vector of P with reference to O is given by
$
\overrightarrow{\mathrm{OP}}(\text { or } \vec{r})=x \hat{i}+y \hat{j}+z \hat{k}
$
And, the length of any vector $\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}$ is given by
$
|\vec{r}|=|x \hat{i}+y \hat{j}+z \hat{k}|=\sqrt{x^2+y^2+z^2}
$
Vector Joining Two Points
If $\mathrm{A}\left(\mathrm{x}_1, \mathrm{y}_1, \mathrm{z}_1\right)$ and $\mathrm{B}\left(\mathrm{x}_2, \mathrm{y}_2, \mathrm{z}_2\right)$ are any two points in three - dimensional system, then vector joining point A and B is the vector $\overrightarrow{A B}$.
Joining the point A and B with the origin, O , we get position vector of point A and B . i.e.
$
\begin{aligned}
& \overrightarrow{O A}=x_1 \hat{i}+y_1 \hat{j}+z_1 \hat{k} \\
& \overrightarrow{O B}=x_2 \hat{i}+y_2 \hat{j}+z_2 \hat{k}
\end{aligned}
$
Applying the triangle law of addition on the triangle $O A B$
$
\overrightarrow{O A}+\overrightarrow{A B}=\overrightarrow{O B}
$
Using the properties of vector addition, the above equation becomes
$
\overrightarrow{A B}=\overrightarrow{O B}-\overrightarrow{O A}
$
i.e.
$
\begin{aligned}
\overrightarrow{A B} & =\left(x_2 \hat{i}+y_2 \hat{j}+z_2 \hat{k}\right)-\left(x_1 \hat{i}+y_1 \hat{j}+z_1 \hat{k}\right) \\
& =\left(x_2-x_1\right) \hat{i}+\left(y_2-y_1\right) \hat{j}+\left(z_2-z_1\right) \hat{k}
\end{aligned}
$
The magnitude of vector $\overrightarrow{A B}$ is given by
$
|\overrightarrow{A B}|=\sqrt{\left(\mathrm{x}_2-\mathrm{x}_1\right)^2+\left(\mathrm{y}_2-\mathrm{y}_1\right)^2+\left(\mathrm{z}_2-\mathrm{z}_1\right)^2}
$
"Stay in the loop. Receive exam news, study resources, and expert advice!"