JEE Main 2025 Admit Card Released for January 22, 23, 24 - Check How to Download

Vectors Joining Two Points - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • Component of vector and Vector Joining Two Points is considered one of the most asked concept.

  • 13 Questions around this concept.

Solve by difficulty

What is position vector of point P(-1,5,7) ?

What is projection of $\vec{b}$ on $\vec{a}$ if $\vec{a} \cdot \vec{b}=2$ and $|\vec{a}|=3$ ?

What is  $|\overrightarrow{O P}|_{\text {if } \mathrm{P} \text { is }}(2,-1,2 \sqrt{5}) ?$

If vector $2 \vec{i}+3 \vec{j}-2 \vec{k}$ and $\vec{i}+2 \vec{j}+\vec{k}$ represents the adjacent sides of any parallelogram then the lenght of diagonal of parallelogram are

Let $O$ be the origin and the position vectors of $A$ and $B$ be $2 \hat{i}+2 \hat{j}+\hat{k}$ and $2 \hat{i}+4 \hat{j}+4 \hat{k}$ respectively. If the internal bisector of $\angle A O B$ meets the line $A B$ at $C$, then the length of $O C$ is

Concepts Covered - 1

Component of vector and Vector Joining Two Points

Let the points A(1, 0, 0), B(0, 1, 0) and C(0, 0, 1) on the x-axis, y-axis and z-axis, respectively. Then, clearly,$|\overrightarrow{\mathrm{OA}}|=1,|\overrightarrow{\mathrm{OB}}|=1$ and $|\overrightarrow{\mathrm{OC}}|=1$

The vectors,  $\overrightarrow{O A}, \overrightarrow{O B}$ and $\overrightarrow{O C}$ each having magnitude 1, are called unit vectors along the axes $O X$, $O Y$, and $O Z$, respectively, and denoted by $\hat{\mathbf{i}}, \hat{\mathbf{j}}$, and $\hat{\mathbf{k}}$ respectively.
Now consider any point $\mathrm{P}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ with position vector OP . Let $\mathrm{P}_1$ be the foot of the perpendicular from P on the plane XOY . As we observe that $P_1 P$ is parallel to the z-axis. Also, $\hat{\mathbf{i}}, \hat{\mathbf{j}}$, and $\hat{\mathbf{k}}$ are the unit vectors along the $x, y$, and $z$-axes, respectively, thus,  by the definition of the coordinates of P, we have $\overrightarrow{\mathrm{P}_1 \mathrm{P}}=\overrightarrow{\mathrm{OR}}=z \hat{\mathbf{k}}$.

Similarly, $\overrightarrow{\mathrm{QP}_1}=\overrightarrow{\mathrm{OS}}=y \hat{\mathbf{j}}$ and $\overrightarrow{\mathrm{OQ}}=x \hat{\mathbf{i}}$

Therefore,
$
\begin{aligned}
& \overrightarrow{\mathrm{OP}_1}=\overrightarrow{\mathrm{OQ}}+\overrightarrow{\mathrm{QP}_1}=x \hat{i}+y \hat{j} \\
& \overrightarrow{\mathrm{OP}}=\overrightarrow{\mathrm{OP}_1}+\overrightarrow{\mathrm{P}_1 \mathrm{P}}=x \hat{i}+y \hat{j}+z \hat{k}
\end{aligned}
$
and,
Hence, the position vector of P with reference to O is given by
$
\overrightarrow{\mathrm{OP}}(\text { or } \vec{r})=x \hat{i}+y \hat{j}+z \hat{k}
$

And, the length of any vector $\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}$ is given by
$
|\vec{r}|=|x \hat{i}+y \hat{j}+z \hat{k}|=\sqrt{x^2+y^2+z^2}
$

Vector Joining Two Points

If $\mathrm{A}\left(\mathrm{x}_1, \mathrm{y}_1, \mathrm{z}_1\right)$ and $\mathrm{B}\left(\mathrm{x}_2, \mathrm{y}_2, \mathrm{z}_2\right)$ are any two points in three - dimensional system, then vector joining point A and B is the vector $\overrightarrow{A B}$.
Joining the point A and B with the origin, O , we get position vector of point A and B . i.e.
$
\begin{aligned}
& \overrightarrow{O A}=x_1 \hat{i}+y_1 \hat{j}+z_1 \hat{k} \\
& \overrightarrow{O B}=x_2 \hat{i}+y_2 \hat{j}+z_2 \hat{k}
\end{aligned}
$

Applying the triangle law of addition on the triangle $O A B$
$
\overrightarrow{O A}+\overrightarrow{A B}=\overrightarrow{O B}
$

Using the properties of vector addition, the above equation becomes
$
\overrightarrow{A B}=\overrightarrow{O B}-\overrightarrow{O A}
$
i.e.
$
\begin{aligned}
\overrightarrow{A B} & =\left(x_2 \hat{i}+y_2 \hat{j}+z_2 \hat{k}\right)-\left(x_1 \hat{i}+y_1 \hat{j}+z_1 \hat{k}\right) \\
& =\left(x_2-x_1\right) \hat{i}+\left(y_2-y_1\right) \hat{j}+\left(z_2-z_1\right) \hat{k}
\end{aligned}
$

The magnitude of vector $\overrightarrow{A B}$ is given by
$
|\overrightarrow{A B}|=\sqrt{\left(\mathrm{x}_2-\mathrm{x}_1\right)^2+\left(\mathrm{y}_2-\mathrm{y}_1\right)^2+\left(\mathrm{z}_2-\mathrm{z}_1\right)^2}
$

Study it with Videos

Component of vector and Vector Joining Two Points

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Get Answer to all your questions

Back to top