Highest Score in JEE Mains 2025: Toppers & Marks Analysis

Linear Combination of Vectors - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • 22 Questions around this concept.

Solve by difficulty

If the vectors $4i+11j+mk, 7i+2j+6k\: and \: i+5j+4k$ are coplanar, then m is :

If  \vec{a},\vec{b},\vec{c} are non-­coplanar vectors and \lambda is a real number, then the vectors \vec{a}+2\vec{b}+3\vec{c},\; \lambda\vec{b}+4\vec{c}\; \; and\; \; (2\lambda -1)\vec{c} are non-­coplanar for

Three point $\vec{a}, \vec{b}, \vec{c}$ are collinear if $\lambda \vec{a}+\mu \vec{b}+\nu \vec{c}=0$ where

Which of the following vectors is/are collinear to $\vec{a}=3 \hat{i}-2 \hat{j}+5 \hat{k}$

If the vector $\vec{b}$ is collinear with the vector $\vec{a}=(2 \sqrt{2},-1,4)$ and $|\vec{b}|=10$, then

Concepts Covered - 2

Linear Combination of Vectors

A vector $\vec{r}$ is said to be a linear combination of vectors $\vec{a}_1, \vec{a}_2, \vec{a}_3 \ldots \ldots, \vec{a}_n$ if there exist scalars $\lambda_1, \lambda_2, \lambda_3, \ldots \ldots, \lambda_n$ such that
$
\vec{r}=\lambda_1 \vec{a}_1+\lambda_2 \vec{a}_2+\lambda_3 \vec{a}_3+\ldots \ldots+\lambda_n \vec{a}_n
$

For example:
vectors $\vec{r}_1=\vec{a}+2 \vec{b}+3 \vec{c}$ and $\overrightarrow{r_2}=\vec{a}-4 \vec{b}-9 \vec{c}$ are linear combination of the vectors $\vec{a}, \vec{b}$ and $\vec{c}$.

Linear Independent Vectors
A system of vectors $\vec{a}_1, \vec{a}_2, \vec{a}_3 \ldots \ldots, \vec{a}_n$ is said to be linearly independent, if
$
\begin{array}{ll} 
& \lambda_1 \vec{a}_1+\lambda_2 \vec{a}_2+\lambda_3 \vec{a}_3+\ldots \ldots+\lambda_n \vec{a}_n=0 \\
\Rightarrow \quad & \lambda_1=\lambda_2=\lambda_3=\ldots \ldots=\lambda_n=0
\end{array}
$

It can be easily verified that

1. A pair of non-collinear vectors ( say a1 and a2 ) are linearly independent.

Let $\vec{a}_1$ and $\vec{a}_2$ are two non-collinear vectors such that $\lambda_1 \vec{a}_1+\lambda_2 \vec{a}_2=0$.
Let, $\quad \lambda_1, \lambda_2 \neq 0$
$
\Rightarrow \quad \vec{a}_1=-\frac{\lambda_2}{\lambda_1} \vec{a}_2
$

Now, $-\frac{\lambda_2}{\lambda_1}$ is a scalar, because $\lambda_1$ and $\lambda_2$ are scalars.
Hence, eq (i) expresses $\vec{a}_1$ as product of $\vec{a}_2$ by a scalar, so that $\vec{a}_1$ and $\vec{a}_2$ are collinear.
Which contradict the given fact because $\overrightarrow{a_1}$ and $\overrightarrow{a_2}$ are given to be non-collinear.
Th thus, our supposition that $\lambda_1 \neq 0$ and $\lambda_2 \neq 0$ is wrong.
Hence, $\lambda_1=0$ and $\lambda_2=0$

2. A triad of non-coplanar vector is linearly independent

If $\mathbf{a}, \mathbf{b}, \mathbf{c}$ are three non-zero, non-coplanar vectors and $x, y, z$ are three scalars such that
$
x a+y b+z c=0
$

Then, $x=y=z=0$
Proof: It is given that $\mathrm{xa}+\mathrm{yb}+\mathrm{zc}=0$
Suppose that $x \neq 0$
Then Eq. (i) can be written as
$
\begin{aligned}
& x=-y \mathbf{b}-z \mathbf{c} \\
& \Rightarrow \mathbf{a}=-\frac{y}{x} \mathbf{b}-\frac{z}{x} \mathbf{c} \ldots(i i) \\
& \underline{y} \quad \underline{z}
\end{aligned}
$

Now, $\bar{x}$ and $\frac{\sim}{x}$ are scalars because x , y and are scalars. Thus, Eq. (ii) expresses $\mathbf{a}$ as a linear combination of $\mathbf{b}$ and $\mathbf{c}$. Hence, $\mathbf{a}$ is coplanar with $\mathbf{b}$ and $\mathbf{c}$ which is contrary to our hypothesis because $\mathbf{a}, \mathbf{b}$ and $\mathbf{c}$ are given to be non-coplanar. Thus, our supposition that $x \neq 0$ is wrong.

Hence, x=0.

Similarly, we can prove that y=0 and z=0.

Note: 4 vectors are always linearly dependent

Linear Dependent Vectors

A system of vectors $\vec{a}_1, \vec{a}_2, \vec{a}_3 \ldots \ldots, \vec{a}_n$ is said to be linearly dependent if there exists scalars $\lambda_1, \lambda_2, \lambda_3, \ldots \ldots \ldots, \lambda_n$ not all zero such that
$
\lambda_1 \vec{a}_1+\lambda_2 \vec{a}_2+\lambda_3 \vec{a}_3+\ldots \ldots+\lambda_n \vec{a}_n=0
$

It can be easily verified that

1. A pair of collinear vectors is linearly dependent.

2. A triad of coplanar vectors is linearly dependent.

Test of collinearity of three points

Let $A(\vec{a}), B(\vec{b})$ and $C(\vec{c})$, be three points in space
If we can find $\mathrm{x}, \mathrm{y}, \mathrm{z}$, not all zero such that (i) $x \vec{a}+y \vec{b}+z \vec{c}=0$ and (ii) $x+y+z=0$

Then the points A, B, and C are collinear

Proof:

Let us suppose that points $A, B$ and $C$ are collinear and their position vectors are $\vec{a}, \vec{b}$ and $\vec{c}$ respectively. Let $C$ divide the join of $\vec{a}$ and $\vec{b}$ in the ratio $y: x$ Then,
or
$
\begin{aligned}
& \vec{c}=\frac{x \vec{a}+y \vec{b}}{x+y} \\
& x \vec{a}+y \vec{b}-(x+y) \vec{c}=\overrightarrow{0} \\
& x \vec{a}+y \vec{b}+z \vec{c}=\overrightarrow{0}, \text { where } z=-(x+y) \\
& x+y+z=x+y-(x+y)=0
\end{aligned}
$
or

Also,

Hence, the three points A, B, and C are collinear. 

Theorem 1:

If $\vec{a}$ and $\vec{b}$ are two non-zero, non-collinear vectors, then every vector $\vec{r}$ coplanar with $\vec{a}$ and $\vec{b}$ can be expressed in one and only one way as a linear combination $x \vec{a}+y \vec{b}$ where $x$ and $y$ being scalars.

Proof: 

Let $O$ be any point such that $\overrightarrow{O A}=\vec{a}$ and $\overrightarrow{O B}=\vec{b}$
As $\vec{r}$ is coplanar with $\vec{a}$ and $\vec{b}$, the lines $O A, O B$ and $O R$ are coplanar. Through $R$, draw lines parallel to $O A$ and $O B$, meeting them at $P$ and $Q$, respectively. Clearly,

Also,
$
\begin{aligned}
\overrightarrow{O P} & =x \overrightarrow{O A}=x \vec{a} \quad(\because \overrightarrow{O P} \text { and } \overrightarrow{O A} \text { are collinear vectors }) \\
\overrightarrow{O Q} & =y \overrightarrow{O B}=y \vec{b} \quad(\because \overrightarrow{O Q} \text { and } \overrightarrow{O B} \text { are collinear vectors }) \\
\vec{r} & =\overrightarrow{O R}=\overrightarrow{O P}+\overrightarrow{P R}=\overrightarrow{O P}+\overrightarrow{O Q} \quad(\because \overrightarrow{O Q} \text { and } \overrightarrow{P R} \text { are equal }) \\
& =x \vec{a}+y \vec{b}
\end{aligned}
$

Thus, $\vec{r}$ can be expressed in one way as a linear combination $x \vec{a}+y \vec{b}$.

Theorem 2

If $\vec{a}, \vec{b}$ and $\vec{c}$ are non-coplanar vectors, then any vector $\vec{r}$ can be uniquely expressed as a linear combination $\vec{x} \vec{a}+y \vec{b}+z \vec{c}$ where $x, y$ and $z$ being scalars.

NOTE:

1.

If vectors $\vec{a}=a_1 \hat{i}+a_2 \hat{j}+a_3 \hat{k}, \quad \vec{b}=b_1 \hat{i}+b_2 \hat{j}+b_3 \hat{k}$ and $\vec{c}=c_1 \hat{i}+c_2 \hat{j}+c_3 \hat{k}$ are coplanar, then
$
\left|\begin{array}{lll}
a_1 & a_2 & a_3 \\
b_1 & b_2 & b_3 \\
c_1 & c_2 & c_3
\end{array}\right|=0
$
(Proof of this will be seen in the concept of Scalar triple Product)
2.

If vectors $x_1 \vec{a}+y_1 \vec{b}+z_1 \vec{c}, \quad x_2 \vec{a}+y_2 \vec{b}+z_2 \vec{c}$ and $x_3 \vec{a}+y_3 \vec{b}+z_3 \vec{c}$ are coplanar where $\vec{a}, \vec{b}$ and $\vec{c}$ are non-coplanar. Then,
$
\left|\begin{array}{lll}
x_1 & y_1 & z_1 \\
x_2 & y_2 & z_2 \\
x_3 & y_3 & z_3
\end{array}\right|=0
$

 

Study it with Videos

Linear Combination of Vectors
Linear Dependent Vectors

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Get Answer to all your questions

Back to top