UPES B.Tech Admissions 2025
Ranked #42 among Engineering colleges in India by NIRF | Highest CTC 50 LPA , 100% Placements
Dot (Scalar) Product in Terms of Components is considered one the most difficult concept.
Dot (Scalar) Product of Two Vectors is considered one of the most asked concept.
66 Questions around this concept.
Let and . Then the vector satisfying and is
Let and . If is a unit vector such that and then is equal to:
If equals:
Also Check: Crack JEE Main 2025 - Join Our Free Crash Course Now!
JEE Main 2025: Sample Papers | Syllabus | Mock Tests | PYQs | Video Lectures
JEE Main 2025: Preparation Guide | High Scoring Topics | Study Plan 100 Days
In a triangle ABC, right angled at the vertex A, if the position vectors of A, B and C are respectively
then the point (p, q) lies on a line :
Let ABCD be a parallelogram such that , and be an acute angle. If is the vector that coincides with the altitude directed from the vertex B to the side AD, then is given by
The position vectors of the vertices $\mathrm{A}, \mathrm{B}$ and $\mathrm{C}$ of a triangle are $2 \hat{\imath}-3 \hat{\jmath}+3 \hat{k}, 2 \hat{\imath}+2 \hat{\jmath}+3 \hat{k}$ and $-\hat{\imath}+\hat{\jmath}+3 \hat{k}$ respectively. Let $\ell$ denotes the length of the angle bisector $\mathrm{AD}$ of $\angle \mathrm{BAC}$ where $\mathrm{D}$ is on the line segment $\mathrm{BC}$, then $2 \ell^2$ equals:
Multiplication (or product) of two vectors is defined in two ways, namely, dot (or scalar) product where the result is a scalar, and vector (or cross) product where the result is a vector. Based upon these two types of products for vectors, we have various applications in geometry, mechanics and engineering.
Dot (scalar) Product
If $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$ are two non-zero vectors, then their scalar product (or dot product) is denoted by $\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}$ and is defined as
Observations:
1. $\quad \vec{a} \cdot \vec{b}$ is a real number.
2. $\quad \vec{a} \cdot \vec{b}$ is positive if $\theta$ is acute.
3. $\quad \vec{a} \cdot \vec{b}$ is negative if $\theta$ is obtuse.
4. $\vec{a} \cdot \vec{b}$ is zero if $\theta$ is $90^{\circ}$.
5. $\quad \vec{a} \cdot \vec{b} \leq|\vec{a}||\vec{b}|$
For any two non-zero vectors $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$, then $\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}=0$ if and only if $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$ perpendicular to each other. i.e.
$$
\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}=0 \Leftrightarrow \overrightarrow{\mathbf{a}} \perp \overrightarrow{\mathbf{b}}
$$
As $\hat{\mathbf{i}}, \hat{\mathbf{j}}$ and $\hat{\mathbf{k}}$ are mutually perpendicular unit vectors along the coordinate axes, therefore,
$$
\hat{\mathbf{i}} \cdot \hat{\mathbf{j}}=\hat{\mathbf{j}} \cdot \hat{\mathbf{i}}=0, \hat{\mathbf{j}} \cdot \hat{\mathbf{k}}=\hat{\mathbf{k}} \cdot \hat{\mathbf{j}}=0 ; \hat{\mathbf{k}} \cdot \hat{\mathbf{i}}=\hat{\mathbf{i}} \cdot \hat{\mathbf{k}}=0
$$
If $\theta=0$, then $\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}=|\vec{a}||\vec{b}|$
In particular, $\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{a}}=|\overrightarrow{\mathbf{a}}|^2$
As $\hat{\mathbf{i}}, \hat{\mathbf{j}}$ and $\hat{\mathbf{k}}$ are unit vectors along the coordinate axes, therefore
$$
\hat{\mathbf{i}} \cdot \hat{\mathbf{i}}=|\hat{\mathbf{i}}|^2=1, \hat{\mathbf{j}} \cdot \hat{\mathbf{j}}=|\hat{\mathbf{j}}|^2=1 \text { and } \hat{\mathbf{k}} \cdot \hat{\mathbf{k}}=|\hat{\mathbf{k}}|^2=1
$$
Properties of Dot (Scalar) Product
1. $\quad \overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}=\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{a}} \quad$ ( commutative )
2. $\overrightarrow{\mathbf{a}} \cdot(\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}})=\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{c}}+\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{c}} \quad$ (distributive)
3. $\quad(m \overrightarrow{\mathbf{a}}) \cdot \overrightarrow{\mathbf{b}}=m(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}})=\overrightarrow{\mathbf{a}} \cdot(m \overrightarrow{\mathbf{b}}) ;$ where $m$ is a scalar and $\vec{a}, \vec{b}$ are any two vectors
4. $\quad(l \overrightarrow{\mathbf{a}}) \cdot(m \overrightarrow{\mathbf{b}})=\operatorname{lm}(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}})$; where $l$ and $m$ are scalars
For any two vectors $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$, we have
(i)
$$
\begin{aligned}
|\vec{a} \pm \vec{b}|^2 & =|\vec{a} \pm \vec{b}| \cdot|\vec{a} \pm \vec{b}| \\
& =|\vec{a}|^2+|\vec{b}|^2 \pm 2 \vec{a} \cdot \vec{b} \\
& =|\vec{a}|^2+|\vec{b}|^2 \pm 2|\vec{a}||\vec{b}| \cos \theta
\end{aligned}
$$
(ii) $|\vec{a}+\vec{b}| \cdot|\vec{a}-\vec{b}|=|\vec{a}|^2-|\vec{b}|^2$
(iii) $|\vec{a}+\vec{b}|=|\vec{a}|+|\vec{b}| \Rightarrow \vec{a}$ and $\vec{b}$ are like vectors
(iv) $|\vec{a}+\vec{b}|=|\vec{a}-\vec{b}| \Rightarrow \vec{a} \perp \vec{b}$
If $\overrightarrow{\mathbf{a}}=a_1 \hat{\mathbf{i}}+a_2 \hat{\mathbf{j}}+a_3 \hat{\mathbf{k}}$ and $\overrightarrow{\mathbf{b}}=b_1 \hat{\mathbf{i}}+b_2 \hat{\mathbf{j}}+b_3 \hat{\mathbf{k}}$, then
$$
\mathbf{a} \cdot \mathbf{b}=a_1 b_1+a_2 b_2+a_3 b_3
$$
Proof:
$$
\begin{aligned}
\vec{a} \cdot \vec{b}= & \left(a_1 \hat{i}+a_2 \hat{j}+a_3 \hat{k}\right) \cdot\left(b_1 \hat{i}+b_2 \hat{j}+b_3 \hat{k}\right) \\
= & a_1 \hat{i} \cdot\left(b_1 \hat{i}+b_2 \hat{j}+b_3 \hat{k}\right)+a_2 \hat{j} \cdot\left(b_1 \hat{i}+b_2 \hat{j}+b_3 \hat{k}\right)+a_3 \hat{k} \cdot\left(b_1 \hat{i}+b_2 \hat{j}+b_3 \hat{k}\right) \\
= & a_1 b_1(\hat{i} \cdot \hat{i})+a_1 b_2(\hat{i} \cdot \hat{j})+a_1 b_3(\hat{i} \cdot \hat{k})+a_2 b_1(\hat{j} \cdot \hat{i})+a_2 b_2(\hat{j} \cdot \hat{j})+a_2 b_3(\hat{j} \cdot \hat{k}) \\
& \quad+a_3 b_1(\hat{k} \cdot \hat{i})+a_3 b_2(\hat{k} \cdot \hat{j})+a_3 b_3(\hat{k} \cdot \hat{k}) \\
= & a_1 b_1+a_2 b_2+a_3 b_3
\end{aligned}
$$
The angle between two vectors
$$
\begin{array}{rlrl}
\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}} & =|\overrightarrow{\mathbf{a}}||\overrightarrow{\mathbf{b}}| \cos \theta \\
\Rightarrow \quad & \cos \theta & =\frac{\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}}{|\overrightarrow{\mathbf{a}}||\overrightarrow{\mathbf{b}}|} \\
\Rightarrow \quad & & =\cos ^{-1}\left(\frac{\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}}{|\overrightarrow{\mathbf{a}}||\overrightarrow{\mathbf{b}}|}\right)
\end{array}
$$
If $\overrightarrow{\mathbf{a}}=a_1 \hat{\mathbf{i}}+a_2 \hat{\mathbf{j}}+a_3 \hat{\mathbf{k}}$ and $\overrightarrow{\mathbf{b}}=b_1 \hat{\mathbf{i}}+b_2 \hat{\mathbf{j}}+b_3 \hat{\mathbf{k}}$
$$
\Rightarrow \quad \theta=\cos ^{-1}\left(\frac{a_1 b_1+a_2 b_2+a_3 b_3}{\sqrt{a_1^2+a_2^2+a_3^2} \sqrt{b_1^2+b_2^2+b_3^2}}\right)
$$
Geometrical Interpretation of Scalar Product
Let and be two vectors represented by OA and OB, respectively.
Draw BL ⊥ OA and AM ⊥ OB.
From triangles OBL and OAM we have OL= OB cos θ and OM = OA cos θ.
Here OL and OM are known as projections of on and on respectively.
Now,
$$
\begin{aligned}
\vec{a} \cdot \vec{b} & =|\vec{a}||\vec{b}| \cos \theta \\
& =|\vec{a}|(O B \cos \theta) \\
& =|\vec{a}|(O L) \\
& =(\text { magnitude of } \vec{a})(\text { projection of } \vec{b} \text { on } \vec{a})
\end{aligned}
$$
Again,
$$
\begin{aligned}
\vec{a} \cdot \vec{b} & =|\vec{a}||\vec{b}| \cos \theta \\
& =|\vec{b}|(|\vec{a}| \cos \theta) \\
& =|\vec{b}|(O A \cos \theta) \\
& =|\vec{b}|(O M) \\
& =(\text { magnitude of } \vec{b})(\text { projection of } \vec{a} \text { on } \vec{b})
\end{aligned}
$$
Thus. geometrically interpreted, the scalar product of two vectors is the product of the modulus of either vector and the projection of the other in its direction.
Thus,
Projection of $\overrightarrow{\mathbf{a}}$ on $\overrightarrow{\mathbf{b}}=\frac{\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}}{|\overrightarrow{\mathbf{b}}|}=\overrightarrow{\mathbf{a}} \cdot \frac{\overrightarrow{\mathbf{b}}}{|\overrightarrow{\mathbf{b}}|}=\overrightarrow{\mathbf{a}} \cdot \hat{\mathbf{b}}$ Projection of $\overrightarrow{\mathbf{b}}$ on $\overrightarrow{\mathbf{a}}=\frac{\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}}{|\overrightarrow{\mathbf{a}}|}=\overrightarrow{\mathbf{b}} \cdot \frac{\overrightarrow{\mathbf{a}}}{|\overrightarrow{\mathbf{a}}|}=\overrightarrow{\mathbf{b}} \cdot \hat{\mathbf{a}}$
"Stay in the loop. Receive exam news, study resources, and expert advice!"