Careers360 Logo
JEE Main Eligibility Criteria 2025- Marks in Class 12th, Age Limit

Dot Product Of Two Vectors - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • Dot (Scalar) Product in Terms of Components is considered one the most difficult concept.

  • Dot (Scalar) Product of Two Vectors is considered one of the most asked concept.

  • 67 Questions around this concept.

Solve by difficulty

Let \dpi{100} \vec{a}=\hat{j}-\hat{k}\;  and \; \vec{c}=\hat{i}-\hat{j}-\hat{k}.  Then the vector \vec{b} satisfying \dpi{100} \vec{a}\times \vec{b}+ \vec{c}=0\; and \; \vec{a}\cdot \vec{b}=3\; is

Let \dpi{100} \vec{u}=\hat{i}+\hat{j},\; \; \vec{v}=\hat{i}-\hat{j} and \vec{w}=\hat{i}+2\hat{j}+3\hat{k}. If \hat{n} is a unit vector such that \vec{u}\cdot \hat{n}=0 and \vec{v}\cdot \hat{n}=0, then \left |\vec{w}\cdot \widehat{n} \right |  is equal to:

If \left | \vec{a} \right |=2,\left | \vec{b} \right |=3\: and\: \left | 2\; \vec{a}-\vec{b} \right | = 5\: then \: \left | 2\; \vec{a} +\vec{b}\right | equals:

\begin{array}{l}{\text { Let } \vec{a}=2 \hat{i}+\hat{j}-2 \hat{k} \text { and } \vec{b}=\hat{i}+\hat{j}} \\ {\text { Let } \vec{c} \text { be a vector such that }|\vec{c}-\vec{a}|=3,|(\vec{a} \times \vec{b}) \times \vec{c}|=3} \\ {\text { and the angle between } \vec{c} \text { and } \vec{a} \times \vec{b} \text { is } 30^{\circ} . \text { Then } \vec{a} . \vec{c} \text { is equal to }}\end{array}

In a triangle ABC, right angled at the vertex A, if the position vectors of A, B and C are respectively 3\hat{i}+\hat{j}-\hat{k},-\hat{i}+3\hat{j}+p\hat{k} \: and\: 5\hat{i}+q\, \hat{j}-4\hat{k},

 then the point (p, q) lies on a line :

Let ABCD be a parallelogram such that \underset{AB}{\rightarrow} = \vec{q},    \underset{AD}{\rightarrow}  = \vec{p} and \angle BAD  be an acute angle. If   \vec{r} is the vector that coincides with the altitude directed from the vertex B to the side AD, then \vec{r} is given by

The position vectors of the vertices $\mathrm{A}, \mathrm{B}$ and $\mathrm{C}$ of a triangle are $2 \hat{\imath}-3 \hat{\jmath}+3 \hat{k}, 2 \hat{\imath}+2 \hat{\jmath}+3 \hat{k}$ and $-\hat{\imath}+\hat{\jmath}+3 \hat{k}$ respectively. Let $\ell$ denotes the length of the angle bisector $\mathrm{AD}$ of $\angle \mathrm{BAC}$ where $\mathrm{D}$ is on the line segment $\mathrm{BC}$, then $2 \ell^2$ equals:

SAGE University Bhopal B.Tech Admissions 2024

100% Placement Assistance

SAGE University Indore B.Tech Admissions 2024

100% Placement Assistance |

Concepts Covered - 2

Dot (Scalar) Product of Two Vectors

Multiplication (or product) of two vectors is defined in two ways, namely, dot (or scalar) product where the result is a scalar, and vector (or cross) product where the result is a vector. Based upon these two types of products for vectors, we have various applications in geometry, mechanics and engineering.

 

Dot (scalar) Product

If \vec{\mathbf a} and \vec{\mathbf b} are two non-zero vectors, then their scalar product (or dot product) is denoted by \vec{\mathbf a} \cdot \vec{\mathbf b} and is defined as

\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}=|\vec{\mathbf a}||\vec{\mathbf b}| \cos \theta. \;\;\;\;\;\;\;\;(0\leq \theta\leq \pi) where, θ is the angle between  \vec{\mathbf a} and \vec{\mathbf b}

Observations:

\\\text { 1. } \;\;\;\vec{a} \cdot \vec{b} \text { is a real number. }\\\text { 2. } \;\;\;\vec{a} \cdot \vec{b}\text { is positive if } \theta \text { is acute. }\\\text { 3. } \;\;\;\vec{a} \cdot \vec{b}\text { is negative if } \theta \text { is obtuse. }\\\text { 4. } \;\;\;\vec{a} \cdot \vec{b}\text { is zero if } \theta \text { is }90^\circ.\\\text { 5. } \;\;\;\vec{a} \cdot \vec{b}\leq|\vec{a}| | \vec{b}|

\\\text {For any two non-zero vectors } \vec {\mathbf a} \text{ and }\vec { \mathbf b}, \text{then}\mathrm{\;\;\;}\vec {\mathbf a} \cdot\vec { \mathbf b}=0\text{ if and only if }\vec {\mathbf a} \text{ and }\vec { \mathbf b}\\\text{perpendicular to each other. i.e.}\\\vec {\mathbf a} \cdot\vec { \mathbf b}=0\Leftrightarrow \vec {\mathbf a} \perp \vec {\mathbf b} \\\text {As } \hat{\mathbf{i}}, \hat{\mathbf{j}} \text { and } \hat{\mathbf{k}} \text { are mutually perpendicular unit vectors }\text { along the coordinate axes, }\\\text{therefore,}\\\mathrm{\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;}\hat{\mathbf{i}} \cdot \hat{\mathbf{j}}=\hat{\mathbf{j}} \cdot \hat{\mathbf{i}}=0, \hat{\mathbf{j}} \cdot \hat{\mathbf{k}}=\hat{\mathbf{k}} \cdot \hat{\mathbf{j}}=0 ; \hat{\mathbf{k}} \cdot \hat{\mathbf{i}}=\hat{\mathbf{i}} \cdot \hat{\mathbf{k}}=0

\\\text {If } \theta=0, \text { then } \vec{\mathbf a} \cdot \vec{\mathbf b}=|\vec{a}||\vec{b}|\\\text {In particular, } \vec{\mathbf{a}} \cdot \vec{\mathbf{a}}=|\vec{\mathbf{a}}|^{2}\\\text {As } \hat{\mathbf{i}}, \hat{\mathbf{j}} \text { and } \hat{\mathbf{k}} \text { are unit vectors along the coordinate }\text { axes, therefore }\\\mathrm{\;\;\;\;\;\;}\hat{\mathbf{i}} \cdot \hat{\mathbf{i}}=|\hat{\mathbf{i}}|^{2}=1, \hat{\mathbf{j}} \cdot \hat{\mathbf{j}}=|\hat{\mathbf{j}}|^{2}=1 \text { and }\hat{\mathbf{k}} \cdot \hat{\mathbf{k}}=|\hat{\mathbf{k}}|^{2}=1

 

Properties of Dot (Scalar) Product

\\1.\;\;\;\;\vec{\mathbf a} \cdot \vec{\mathbf b}=\vec{\mathbf b} \cdot \vec{\mathbf a}\;\;\;\;\;\;\;\;\;\;(\text { commutative })\\2.\;\;\;\;\vec{\mathbf a}\cdot \left ( \vec{\mathbf b}+\vec{\mathbf c} \right )=\vec{\mathbf a} \cdot \vec{\mathbf c}+\vec{\mathbf a} \cdot \vec{\mathbf c}\;\;\;\;\;\;\;\;\;\;(\text { distributive })\\3.\;\;\;\;(m \vec {\mathbf a}) \cdot \vec{\mathbf{b}}=m(\vec{\mathbf{a}} \cdot \vec{\mathbf{b}})=\vec{\mathbf{a}} \cdot(m \vec{\mathbf{b}});\text{where }\ m \text { is a scalar and } \vec a,\;\vec b \text{ are any two vectors } \\4.\;\;\;\;(l\vec{\mathbf a}) \cdot(m \vec{\mathbf b})=l m(\vec{\mathbf a} \cdot \vec{\mathbf b}) ; \text { where } l \text { and } m \text { are scalars }

 

\\\text {For any two vectors } \vec {\mathbf a} \text{ and }\vec { \mathbf b}, \;\;\text{we have }\;\\\mathrm{\;\;(i)}\;|\vec{a} \pm \vec{b}|^{2}=|\vec{a} \pm \vec{b}| \cdot|\vec{a} \pm \vec{b}|\\\mathrm{\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=}\;|\vec{a}|^{2}+|\vec{b}|^{2} \pm 2 \vec{a} \cdot \vec{b}\\\mathrm{\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=}\;|\vec{a}|^{2}+|\vec{b}|^{2} \pm 2|\vec{a}||\vec{b}| \cos \theta\\\\\mathrm{\;\;(ii)}\;|\vec{a}+\vec{b}| \cdot {|\overrightarrow a}-\vec{b}|=|\vec{a}|^{2}-|\vec{b}|^{2}\\\\\mathrm{\;\;(iii)}\;\left | \vec{ a}+ \vec{ b} \right |=\left | \vec a \right |+\left | \vec b \right |\;\;\Rightarrow \;\;\vec a\,\,and\,\, \vec b\,\,are\,\,like\,\,vectors\\\\\mathrm{\;\;(iv)}\;\left | \vec{ a}+ \vec{ b} \right |=\left | \vec a -\vec b \right |\;\;\Rightarrow \;\;\vec a\perp \vec b

Dot (Scalar) Product in Terms of Components

\\ \text {If } \vec {\mathbf a}=a_{1} \hat{\mathbf{i}}+a_{2} \hat{\mathbf{j}}+a_{3} \hat{\mathbf{k}} \;\text { and }\; \vec {\mathbf{b}}=b_{1} \hat{\mathbf{i}}+b_{2} \hat{\mathbf{j}}+b_{3} \hat{\mathbf{k}}, \text { then } \\ {\mathbf{a} \cdot \mathbf{b}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}}

Proof :

\\\vec{a} \cdot \vec{b}=\left(a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}\right) \cdot\left(b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}\right)\\\mathrm{\;\;\;\;\;\;}=a_{1} \hat{i} \cdot\left(b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}\right)+a_{2} \hat{j} \cdot\left(b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}\right)+a_{3} \hat{k} \cdot\left(b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}\right)\\\mathrm{\;\;\;\;\;\;}=a_{1} b_{1}(\hat{i} \cdot \hat{i})+a_{1} b_{2}(\hat{i} \cdot \hat{j})+a_{1} b_{3}(\hat{i} \cdot \hat{k})+a_{2} b_{1}(\hat{j} \cdot \hat{i})+a_{2} b_{2}(\hat{j} \cdot \hat{j})+a_{2} b_{3}(\hat{j} \cdot \hat{k})\\\mathrm{\;\;\;\;\;\;\;\;\;\;\;\;\;\;}+a_{3} b_{1}(\hat{k} \cdot \hat{i})+a_{3} b_{2}(\hat{k} \cdot \hat{j})+a_{3} b_{3}(\hat{k} \cdot \hat{k})\\\mathrm{\;\;\;\;\;\;}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}


Angle between two vectors

\\\mathrm{\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;}\vec{\mathbf a} \cdot \vec{\mathbf b}=|\vec{\mathbf a}||\vec{\mathbf b}| \cos \theta\\\\\mathrm{\Rightarrow \;\;\;\;\;\;\;\;\;\;\;}\cos \theta=\frac{\vec{\mathbf a} \cdot \vec{\mathbf b}}{|\vec{\mathbf a}||\vec{\mathbf b}| }\\\\\mathrm{\Rightarrow \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;} \theta=\cos^{-1}\left (\frac{\vec{\mathbf a} \cdot \vec{\mathbf b}}{|\vec{\mathbf a}||\vec{\mathbf b}| } \right )\\\\\text{If }\;\;\vec {\mathbf a}=a_{1} \hat{\mathbf{i}}+a_{2} \hat{\mathbf{j}}+a_{3} \hat{\mathbf{k}}\;\;\text{and }\;\;\vec{\mathbf b}=b_{1} \hat{\mathbf{i}}+b_{2} \hat{\mathbf{j}}+b_{3} \hat{\mathbf{k}}\\\\\mathrm{\Rightarrow \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;} \theta=\cos ^{-1}\left(\frac{a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}}{\sqrt{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}} \sqrt{b_{1}^{2}+b_{2}^{2}+b_{3}^{2}}}\right)

 

 

 

Geometrical Interpretation of Scalar Product

 Let \vec{\mathbf a} and \vec{\mathbf b} be two vectors represented by OA and OB, respectively. 

Draw BL ⊥ OA and AM ⊥ OB.

From triangles OBL and OAM we have OL= OB cos θ and OM = OA cos θ.   

Here OL and OM are known as projections of \vec{\mathbf b} on  \vec{\mathbf a} and \vec{\mathbf a} on \vec{\mathbf b} respectively.

 

\\\mathrm{Now,\;\;\;\;\;\;\;\;\;\;\;}\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \theta\\\mathrm{\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;} {=|\vec{a}|(O B \cos \theta)} \\ \mathrm{\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;} {=|\vec{a}|(O L)} \\\mathrm{\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;} {=(\text { magnitude of } \vec{a})(\text { projection of } \vec{b} \text { on } \vec{a})}\\\\\mathrm{Again,\;\;\;\;\;\;\;\;\;}\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \theta\\ \mathrm{\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;}=|\vec{b}|(|\vec{a}| \cos \theta)\\\mathrm{\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;} {=|\vec{b}|(O A \cos \theta)} \\ \mathrm{\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;} {=|\vec{b}|(O M)} \\\mathrm{\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;} {=(\text { magnitude of } \vec{b})(\text { projection of } \vec{a} \text { on } \vec{b})}

Thus. geometrically interpreted, the scalar product of two vectors is the product of modulus of either vectors and the projection of the other in its direction. 

Thus, 

\\\text { Projection of } \vec{\mathbf a} \text { on } \vec{\mathbf b}=\frac{\vec{\mathbf a}\cdot \vec{\mathbf b}}{|\vec{\mathbf b}|}=\vec{\mathbf a} \cdot \frac{\vec{\mathbf b}}{|\vec{\mathbf b}|}=\vec{\mathbf a} \cdot \mathbf{\hat{b}}\\\\\text { Projection of } \vec{\mathbf b} \text { on } \vec{\mathbf a}=\frac{\vec{\mathbf a}\cdot \vec{\mathbf b}}{|\vec{\mathbf a}|}=\vec{\mathbf b} \cdot \frac{\vec{\mathbf a}}{|\vec{\mathbf a}|}=\vec{\mathbf b} \cdot \mathbf{\hat{a}}

Study it with Videos

Dot (Scalar) Product of Two Vectors
Dot (Scalar) Product in Terms of Components

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Books

Reference Books

Dot (Scalar) Product of Two Vectors

Mathematics for Joint Entrance Examination JEE (Advanced) : Vectors and 3D Geometry

Page No. : 2.64

Line : 1

E-books & Sample Papers

Get Answer to all your questions

Back to top