UPES B.Tech Admissions 2026
Ranked #43 among Engineering colleges in India by NIRF | Highest Package 1.3 CR , 100% Placements
Dot (Scalar) Product in Terms of Components is considered one the most difficult concept.
Dot (Scalar) Product of Two Vectors is considered one of the most asked concept.
121 Questions around this concept.
Let   and 
.  Then the vector 
 satisfying 
 and 
 is
Let  and 
. If 
 is a unit vector such that 
 and 
 then 
  is equal to:
If  equals:
JEE Main 2026: Preparation Tips & Study Plan | Previous 10 Year Questions
JEE Main 2026: 100 Days Study Plan | High Scoring Chapters and Topics | Preparation Tips
JEE Main 2026: Top 30 Most Repeated Questions | Chapter Wise PYQs | Mock test Series
JEE Main 2025 Most Scoring Concept: January Session | April Session
In a triangle $A B C$, right angled at the vertex $A$, if the position vectors of $A, B$ and $C$ are respectively $3 \hat{i}+\hat{j}-\hat{k},-\hat{i}+3 \hat{j}+p \hat{k}$ and $5 \hat{i}+q \hat{j}-4 \hat{k}$, then the point $(p, q)$ lies on a line :
Let $\vec{a}, \vec{b}$ and $\vec{c}$ be three vertices such that $|\vec{a}|=\sqrt{3},|\vec{b}|=5, \vec{b} \cdot \vec{c}=10$ and the angle between $\vec{b}$ and $\vec{c}$ is $\frac{\pi}{3}$. If $\rightarrow \vec{a}$ is perpendicular to the vector $\vec{b} \times \vec{c}$, then $|\vec{a} \times(b \times \vec{c})|_{\text {is equal }}$ to $\qquad$
$(2\hat{i}-\hat{j}+\hat{k})\cdot (3\hat{i}+\hat{j}-7\hat{k})=$
Ranked #43 among Engineering colleges in India by NIRF | Highest Package 1.3 CR , 100% Placements
100% Placement Record | Highest CTC 54 LPA | NAAC A++ Accredited | Ranked #65 in India by NIRF Ranking 2024 | JEE & JET Scores Accepted
$(a.i)i+(a.j)j+(a.k)k=$
$\vec{p} \cdot \vec{q}=\vec{q} \cdot \vec{p}$ is which property of vectors?
$2(\vec{a}+(3+4) \vec{b})=$
Multiplication (or product) of two vectors is defined in two ways, namely, dot (or scalar) product where the result is a scalar, and vector (or cross) product where the result is a vector. Based upon these two types of products for vectors, we have various applications in geometry, mechanics and engineering.
Dot (scalar) Product
If $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$ are two non-zero vectors, then their scalar product (or dot product) is denoted by $\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}$ and is defined as
Observations:
1. $\quad \vec{a} \cdot \vec{b}$ is a real number.
2. $\quad \vec{a} \cdot \vec{b}$ is positive if $\theta$ is acute.
3. $\quad \vec{a} \cdot \vec{b}$ is negative if $\theta$ is obtuse.
4. $\vec{a} \cdot \vec{b}$ is zero if $\theta$ is $90^{\circ}$.
5. $\quad \vec{a} \cdot \vec{b} \leq|\vec{a}||\vec{b}|$
For any two non-zero vectors $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$, then $\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}=0$ if and only if $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$ perpendicular to each other. i.e.
$
\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}=0 \Leftrightarrow \overrightarrow{\mathbf{a}} \perp \overrightarrow{\mathbf{b}}
$
As $\hat{\mathbf{i}}, \hat{\mathbf{j}}$ and $\hat{\mathbf{k}}$ are mutually perpendicular unit vectors along the coordinate axes, therefore,
$
\hat{\mathbf{i}} \cdot \hat{\mathbf{j}}=\hat{\mathbf{j}} \cdot \hat{\mathbf{i}}=0, \hat{\mathbf{j}} \cdot \hat{\mathbf{k}}=\hat{\mathbf{k}} \cdot \hat{\mathbf{j}}=0 ; \hat{\mathbf{k}} \cdot \hat{\mathbf{i}}=\hat{\mathbf{i}} \cdot \hat{\mathbf{k}}=0
$
If $\theta=0$, then $\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}=|\vec{a}||\vec{b}|$
In particular, $\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{a}}=|\overrightarrow{\mathbf{a}}|^2$
As $\hat{\mathbf{i}}, \hat{\mathbf{j}}$ and $\hat{\mathbf{k}}$ are unit vectors along the coordinate axes, therefore
$
\hat{\mathbf{i}} \cdot \hat{\mathbf{i}}=|\hat{\mathbf{i}}|^2=1, \hat{\mathbf{j}} \cdot \hat{\mathbf{j}}=|\hat{\mathbf{j}}|^2=1 \text { and } \hat{\mathbf{k}} \cdot \hat{\mathbf{k}}=|\hat{\mathbf{k}}|^2=1
$
Properties of Dot (Scalar) Product
1. $\quad \overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}=\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{a}} \quad$ ( commutative )
2. $\overrightarrow{\mathbf{a}} \cdot(\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}})=\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{c}}+\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{c}} \quad$ (distributive)
3. $\quad(m \overrightarrow{\mathbf{a}}) \cdot \overrightarrow{\mathbf{b}}=m(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}})=\overrightarrow{\mathbf{a}} \cdot(m \overrightarrow{\mathbf{b}}) ;$ where $m$ is a scalar and $\vec{a}, \vec{b}$ are any two vectors
4. $\quad(l \overrightarrow{\mathbf{a}}) \cdot(m \overrightarrow{\mathbf{b}})=\operatorname{lm}(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}})$; where $l$ and $m$ are scalars
For any two vectors $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$, we have
(i)
$
\begin{aligned}
|\vec{a} \pm \vec{b}|^2 & =|\vec{a} \pm \vec{b}| \cdot|\vec{a} \pm \vec{b}| \\
& =|\vec{a}|^2+|\vec{b}|^2 \pm 2 \vec{a} \cdot \vec{b} \\
& =|\vec{a}|^2+|\vec{b}|^2 \pm 2|\vec{a}||\vec{b}| \cos \theta
\end{aligned}
$
(ii) $|\vec{a}+\vec{b}| \cdot|\vec{a}-\vec{b}|=|\vec{a}|^2-|\vec{b}|^2$
(iii) $|\vec{a}+\vec{b}|=|\vec{a}|+|\vec{b}| \Rightarrow \vec{a}$ and $\vec{b}$ are like vectors
(iv) $|\vec{a}+\vec{b}|=|\vec{a}-\vec{b}| \Rightarrow \vec{a} \perp \vec{b}$
If $\overrightarrow{\mathbf{a}}=a_1 \hat{\mathbf{i}}+a_2 \hat{\mathbf{j}}+a_3 \hat{\mathbf{k}}$ and $\overrightarrow{\mathbf{b}}=b_1 \hat{\mathbf{i}}+b_2 \hat{\mathbf{j}}+b_3 \hat{\mathbf{k}}$, then
$
\mathbf{a} \cdot \mathbf{b}=a_1 b_1+a_2 b_2+a_3 b_3
$
Proof:
$
\begin{aligned}
\vec{a} \cdot \vec{b}= & \left(a_1 \hat{i}+a_2 \hat{j}+a_3 \hat{k}\right) \cdot\left(b_1 \hat{i}+b_2 \hat{j}+b_3 \hat{k}\right) \\
= & a_1 \hat{i} \cdot\left(b_1 \hat{i}+b_2 \hat{j}+b_3 \hat{k}\right)+a_2 \hat{j} \cdot\left(b_1 \hat{i}+b_2 \hat{j}+b_3 \hat{k}\right)+a_3 \hat{k} \cdot\left(b_1 \hat{i}+b_2 \hat{j}+b_3 \hat{k}\right) \\
= & a_1 b_1(\hat{i} \cdot \hat{i})+a_1 b_2(\hat{i} \cdot \hat{j})+a_1 b_3(\hat{i} \cdot \hat{k})+a_2 b_1(\hat{j} \cdot \hat{i})+a_2 b_2(\hat{j} \cdot \hat{j})+a_2 b_3(\hat{j} \cdot \hat{k}) \\
& \quad+a_3 b_1(\hat{k} \cdot \hat{i})+a_3 b_2(\hat{k} \cdot \hat{j})+a_3 b_3(\hat{k} \cdot \hat{k}) \\
= & a_1 b_1+a_2 b_2+a_3 b_3
\end{aligned}
$
The angle between two vectors
$
\begin{array}{rlrl}
\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}} & =|\overrightarrow{\mathbf{a}}||\overrightarrow{\mathbf{b}}| \cos \theta \\
\Rightarrow \quad & \cos \theta & =\frac{\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}}{|\overrightarrow{\mathbf{a}}||\overrightarrow{\mathbf{b}}|} \\
\Rightarrow \quad & & =\cos ^{-1}\left(\frac{\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}}{|\overrightarrow{\mathbf{a}}||\overrightarrow{\mathbf{b}}|}\right)
\end{array}
$
If $\overrightarrow{\mathbf{a}}=a_1 \hat{\mathbf{i}}+a_2 \hat{\mathbf{j}}+a_3 \hat{\mathbf{k}}$ and $\overrightarrow{\mathbf{b}}=b_1 \hat{\mathbf{i}}+b_2 \hat{\mathbf{j}}+b_3 \hat{\mathbf{k}}$
$
\Rightarrow \quad \theta=\cos ^{-1}\left(\frac{a_1 b_1+a_2 b_2+a_3 b_3}{\sqrt{a_1^2+a_2^2+a_3^2} \sqrt{b_1^2+b_2^2+b_3^2}}\right)
$

Geometrical Interpretation of Scalar Product
Let $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$ be two vectors represented by OA and OB, respectively.
Draw $\mathrm{BL} \perp \mathrm{OA}$ and $\mathrm{AM} \perp \mathrm{OB}$.
From triangles OBL and OAM we have $\mathrm{OL}=\mathrm{OB} \cos \theta$ and $\mathrm{OM}=\mathrm{OA} \cos \theta$.
Here OL and OM are known as projections of $\overrightarrow{\mathbf{b}}$ on $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{a}}$ on $\overrightarrow{\mathbf{b}}$ respectively.

Now,
$
\begin{aligned}
\vec{a} \cdot \vec{b} & =|\vec{a}||\vec{b}| \cos \theta \\
& =|\vec{a}|(O B \cos \theta) \\
& =|\vec{a}|(O L) \\
& =(\text { magnitude of } \vec{a})(\text { projection of } \vec{b} \text { on } \vec{a})
\end{aligned}
$
Again,
$
\begin{aligned}
\vec{a} \cdot \vec{b} & =|\vec{a}||\vec{b}| \cos \theta \\
& =|\vec{b}|(|\vec{a}| \cos \theta) \\
& =|\vec{b}|(O A \cos \theta) \\
& =|\vec{b}|(O M) \\
& =(\text { magnitude of } \vec{b})(\text { projection of } \vec{a} \text { on } \vec{b})
\end{aligned}
$
Thus. geometrically interpreted, the scalar product of two vectors is the product of the modulus of either vector and the projection of the other in its direction.
Thus,
Projection of $\overrightarrow{\mathbf{a}}$ on $\overrightarrow{\mathbf{b}}=\frac{\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}}{|\overrightarrow{\mathbf{b}}|}=\overrightarrow{\mathbf{a}} \cdot \frac{\overrightarrow{\mathbf{b}}}{|\overrightarrow{\mathbf{b}}|}=\overrightarrow{\mathbf{a}} \cdot \hat{\mathbf{b}}$ Projection of $\overrightarrow{\mathbf{b}}$ on $\overrightarrow{\mathbf{a}}=\frac{\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}}{|\overrightarrow{\mathbf{a}}|}=\overrightarrow{\mathbf{b}} \cdot \frac{\overrightarrow{\mathbf{a}}}{|\overrightarrow{\mathbf{a}}|}=\overrightarrow{\mathbf{b}} \cdot \hat{\mathbf{a}}$
"Stay in the loop. Receive exam news, study resources, and expert advice!"
