Engineering Entrance Exams Application Date 2025 & Details

Multiplication Of Vectors And Scalar Quantity - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • Multiplication of a Vector by a Scalar is considered one of the most asked concept.

  • 14 Questions around this concept.

Solve by difficulty

if \left | \vec{c} \right |^{2}=60\; and\; \vec{c}\times (\hat{i}+2\hat{j}+5\hat{k})=\vec{0}, then a value of  \dpi{100} \vec{c} \cdot (-7\hat{i} + 2\hat{j} + 3\hat{k}) \; \text{is} \; :   

Let PQR be a triangle with $R(-1,4,2)$. Suppose $M(2,1,2)$ is the mid point of PQ. The distance of the centroid of $\triangle \mathrm{PQR}$ from the point of intersection of the lines $\frac{\mathrm{x}-2}{0}=\frac{\mathrm{y}}{2}=\frac{\mathrm{z}+3}{-1}$ and $\frac{\mathrm{x}-1}{1}=\frac{\mathrm{y}+3}{-3}=\frac{\mathrm{z}+1}{1}$ is
 

Concepts Covered - 1

Multiplication of a Vector by a Scalar

If a is a vector and "λ" is a scalar (i.e. a real number), then λa is a vector whose magnitude is |λ| times that of a and whose direction is the same (or opposite) that of a according as the value of λ is positive (or negative).

Note that λa is collinear to the vector a

If

\\\mathrm{\;\;\;\;\;\;\;\;\;\;\mathbf{\vec a}=a_{1} \hat{\mathbf{i}}+a_{2} \hat{\mathbf{j}}+a_{3} \hat{\mathbf{k}}}\\\text{then,}\\\mathrm{\;\;\;\;\;\;\;\;\;\lambda\mathbf{\vec a}=\left (\lambda a_{1} \right ) \hat{\mathbf{i}}+\left (\lambda a_{2} \right ) \hat{\mathbf{j}}+\left (\lambda a_{3} \right ) \hat{\mathbf{k}}}

 

Properties of multiplication of a vector by a scalar

a and b are vectors, λ  and γ are scalars.

\\1.\;\;\;\;\lambda(-\mathbf{ {\vec a}})=(-\lambda)(\mathbf{ {\vec a}})=-(\lambda\mathbf{ {\vec a}})\\2.\;\;\;\;(-\lambda)(-\mathbf{ {\vec a}})=\lambda\mathbf{ {\vec a}}\\3.\;\;\;\;\lambda(\gamma\mathbf{ {\vec a}})=(\lambda\gamma)(\mathbf{ {\vec a}})=\gamma(\lambda\mathbf{ {\vec a}})\\4.\;\;\;\;(\lambda+\gamma)\mathbf{\vec a}=\lambda\mathbf{\vec a}+\gamma\mathbf{\vec a}\\5.\;\;\;\;\lambda(\mathbf{\vec a+\vec b})=\lambda(\mathbf{\vec a})+\lambda(\mathbf{\vec b})

 

A geometric visualisation of multiplication of a vector by a scalar

Study it with Videos

Multiplication of a Vector by a Scalar

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Books

Reference Books

Multiplication of a Vector by a Scalar

Mathematics for Joint Entrance Examination JEE (Advanced) : Vectors and 3D Geometry

Page No. : 2.14

Line : 12

E-books & Sample Papers

Get Answer to all your questions

Back to top