Engineering Entrance Exams Application Date 2025 & Details

Direction Cosines & Direction Ratios Of A Line - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • Direction Cosines and Direction Ratio is considered one of the most asked concept.

  • 7 Questions around this concept.

Solve by difficulty

Let a unit vector \widehat{\mathrm{OP}} make angles \alpha ,\beta, \gamma with the positive directions of the co-ordinate axes OX, OY, OZ respectively, where \beta \in\left(0, \frac{\pi}{2}\right) . If \widehat{\mathrm{OP}}  is perpendicular to the plane through points (1,2,3), (2,3,4) and (1,5,7), then which one of the

following is true ? 

Concepts Covered - 1

Direction Cosines and Direction Ratio

Direction Cosines (DCs)

Let r be the position vector of a point P(x, y, z). Then, direction cosines of vector r are the cosines of angles α, β and γ (i.e. cos α, cos β and cos γ) that the vector r makes with the positive direction of X, Y and Z -axes respectively. Direction cosines are usually denote by l, m and n respectively.


From the figure, note that, ΔOAP is a right angled triangle and thus, we have

\\\textbf{\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;}\cos \alpha=\frac{x}{r}\;\;(r \text { stands for }|r|) \\\\\text {Similarly, from the right angled triangles } O B P \text { and } O C P, \\\text {We have, }\\\textbf{\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;}\cos \beta=\frac{y}{r} \text { and } \cos \gamma=\frac{z}{r}\\\text {So we have the following results, }\\\\\mathit{\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;}\cos \alpha=l=\frac{x}{\sqrt{x^{2}+y^{2}+z^{2}}}=\frac{x}{|\mathbf{r}|}=\frac{x}{r}\\\\\mathit{\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;}\cos \beta=m=\frac{y}{\sqrt{x^{2}+y^{2}+z^{2}}}=\frac{y}{|\mathbf{r}|}=\frac{y}{r}\\\\\mathit{\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;}\cos \gamma=n=\frac{z}{\sqrt{x^{2}+y^{2}+z^{2}}}=\frac{z}{|\mathbf{r}|}=\frac{z}{r}

Also,

\\\mathit{\;\;\;\;\;\;\;\;\;\;}l^2=\frac{x^2}{{x^{2}+y^{2}+z^{2}}}\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\ldots(i)\\\mathit{\;\;\;\;\;\;\;\;\;\;}m^2=\frac{y^2}{{x^{2}+y^{2}+z^{2}}}\;\;\;\;\;\;\;\;\;\;\;\;\;\;\ldots(ii)\\\mathit{\;\;\;\;\;\;\;\;\;\;}n^2=\frac{z^2}{{x^{2}+y^{2}+z^{2}}}\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\ldots(iii)\\\\\textup{Add (i),\;(ii)\;and\;\;(iii)}\\l^2+m^2+n^2=\frac{x^2}{{x^{2}+y^{2}+z^{2}}}+\frac{y^2}{{x^{2}+y^{2}+z^{2}}}+\frac{z^2}{{x^{2}+y^{2}+z^{2}}}\\\\\Rightarrow l^2+m^2+n^2=1\\\\\Rightarrow \cos^2\alpha+\cos^2\beta+\cos^2\gamma=1

The coordinates of the point P may also be expressed as (lr, mr,nr).

 

Direction ratios (DRs)

Direction Ratios are any set of three numbers that are proportional to the Direction cosines.

If l, m, n are DCs of a vector then \lambda l, \lambda m, \lambda n are DRs of this vector, where a can take any real value.

DRs are also denoted as a, b and c, respectively.

A vector has only one set of DCs, but infinite sets of DRs.

Note:
The coordinates of a point equal lr, mr and nr, which are proportional to the direction cosines. Hence the coordinates of a point are also its DRs.

\\ \text{If }{ \vec r=a i+b \hat{j}+c \hat{k}, \text { then } a, b \text { and } c \text { are one of the direction ratios of the }} {\text { given vector. }} \\ {\text {Also, if } a^{2}+b^{2}+c^{2}=1 \text { , then }a,\; b \text { and } c \text { will be direction }} {\text { cosines of given vector. }}

Study it with Videos

Direction Cosines and Direction Ratio

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Books

Reference Books

Direction Cosines and Direction Ratio

Mathematics for Joint Entrance Examination JEE (Advanced) : Vectors and 3D Geometry

Page No. : 2.4

Line : 21

E-books & Sample Papers

Get Answer to all your questions

Back to top