JEE Main 2025 Admit Card Released for January 22, 23, 24 - Check How to Download

Section Formula - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • Section Formula is considered one of the most asked concept.

  • 8 Questions around this concept.

Solve by difficulty

If $C$ is the mid point of $A B$ and $P$ is any point outside $A B$, then

If position vector of a point A is a +2b and a divides Ab in the ratio 2:3, then the position vector of B is :

What is the position vector of a point which divides point A with position vector, $\overrightarrow{O A}=2 \hat{i}-\hat{j}+3 \hat{k}$ and point B with position vector $\overrightarrow{O B}=-2 \hat{i}+3 \hat{j}-3 \hat{k}$ in the ratio $2: 3$ ?

Concepts Covered - 1

Section Formula

Let A and B be two points represented by the position vectors $\overrightarrow{O A}$ and $\overrightarrow{O B}$, respectively, with respect to the origin O. 

Let R be a point that divides the line segment joining the points A and B in the ratio m: n. 

Internal Division

If R divides AB internally in the ratio m: n, then the position vector of R is given by  $\overrightarrow{\mathrm{OR}}=\frac{m \vec{b}+n \vec{a}}{m+n}$

Proof : 

Let $O$ be the origin. Then $\overrightarrow{\mathrm{OA}}=\tilde{\mathbf{a}}$ and $\overrightarrow{\mathrm{OB}}=\tilde{\mathbf{b}}$. Let $\tilde{\mathbf{r}}$ be the position vector of R which divides AB internally in the ratio $\mathrm{m}: \mathrm{n}$. Then
or
$
\begin{aligned}
& \frac{\mathrm{AR}}{\mathrm{RB}}=\frac{\mathrm{m}}{\mathrm{n}} \\
& \mathrm{n}(\overrightarrow{A R})=\mathrm{m}(\overrightarrow{R B})
\end{aligned}
$

Now from triangles ORB and OAR, we have
$
\overrightarrow{\mathrm{RB}}=\overrightarrow{\mathrm{OB}}-\overrightarrow{\mathrm{OR}}=\tilde{\mathrm{b}}-\tilde{\mathrm{r}}
$
and,
$
\overrightarrow{\mathrm{AR}}=\overrightarrow{\mathrm{OR}}-\overrightarrow{\mathrm{OA}}=\tilde{\mathrm{r}}-\tilde{\mathrm{a}}
$

Therefore, we have
or
$
\begin{gathered}
\mathrm{m}(\tilde{\mathrm{~b}}-\tilde{\mathrm{r}})=\mathrm{n}(\tilde{\mathrm{r}}-\tilde{\mathrm{a}}) \\
\vec{r}=\frac{m \vec{b}+n \vec{a}}{m+n}
\end{gathered}
$

Hence, the position vector of the point R which divides A and B internally in the ratio of m: n is given by

$\overrightarrow{\mathrm{OR}}=\frac{m \vec{b}+n \vec{a}}{m+n}$

External Division

If R divides AB externally in the ratio m: n, then the position vector of R is given by $\overrightarrow{\mathrm{OR}}=\frac{m \vec{b}-n \vec{a}}{m-n}$

NOTE:

If R is the midpoint of AB, then m = n. And therefore, the midpoint R of $\overrightarrow{A B}$ , will have its position vector as$\overrightarrow{\mathrm{OR}}=\frac{\vec{a}+\vec{b}}{2}$

Study it with Videos

Section Formula

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Get Answer to all your questions

Back to top