JEE Main Eligibility Marks in 12th Subject Wise 2025 – Check Minimum Marks Criteria

Trigonometric Ratios of Some Specific Angles - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • 16 Questions around this concept.

Solve by difficulty

If $\cos A=\frac{\sqrt{10+2 \sqrt{5}}}{4}$ then solve $\frac{\sin A}{\tan \frac{A}{2}}$

$\sin ^2 18^{\circ}-\cos ^2 36^{\circ}=$

If $A=18^{\circ}$ what is $\sin A+\cos 2 A=$ ?

Concepts Covered - 2

Value Trigonometric Ratio of some Particular Angle (Applications) (Part 1)

Value Trigonometric Ratios of some Particular Angles (Part 1)
1. $\sin 18^{\circ}$

Let $\theta=18^{\circ}$, then $5 \theta=90^{\circ} \therefore 2 \theta+3 \theta=90^{\circ}$
or $2 \theta=90^{\circ}-3 \theta \therefore \sin 2 \theta=\sin \left(90^{\circ}-3 \theta\right)$
or $\sin 2 \theta=\cos 3 \theta$ or $2 \sin \theta \cos \theta=4 \cos ^3 \theta-3 \cos \theta$
or $2 \sin \theta=4 \cos ^2 \theta-3 \quad$ [ dividing by $\cos \theta$ ]
or $2 \sin \theta=4\left(1-\sin ^2 \theta\right)-3=1-4 \sin ^2 \theta$
or $4 \sin ^2 \theta+2 \sin \theta-1=0$
$\therefore \sin \theta=\frac{-2 \pm \sqrt{4+16}}{8}=\frac{-2 \pm 2 \sqrt{5}}{8}=\frac{-1 \pm \sqrt{5}}{4}$
Thus $\sin \theta=\frac{-1+\sqrt{5}}{4}, \frac{-1-\sqrt{5}}{4}$
$\because \theta=18^{\circ}$
$\therefore \sin \theta=\sin 18^{\circ}>0$, as $18^{\circ}$ lies in the 1 st quadrant
$\therefore \sin \theta$ i.e., $\sin 18^{\circ}=\frac{\sqrt{5}-1}{4}$

2. $\cos 18^{\circ}$

$
\begin{aligned}
\cos ^2 18^{\circ} & =1-\sin ^2 18^{\circ}=1-\left(\frac{\sqrt{5}-1}{4}\right)^2 \\
& =1-\frac{5+1-2 \sqrt{5}}{16}=1-\frac{6-2 \sqrt{5}}{16} \\
& =\frac{16-6+2 \sqrt{5}}{16}=\frac{10+2 \sqrt{5}}{16} \\
\therefore \quad \cos 18^{\circ} & =\frac{1}{4} \sqrt{10+2 \sqrt{5}} \quad\left[\because \cos 18^{\circ}>0\right]
\end{aligned}
$

3. $\sin 72^{\circ}$ and $\cos 72^{\circ}$

$
\begin{aligned}
& \sin 72^{\circ}=\sin \left(90^{\circ}-18^{\circ}\right)=\cos 18^{\circ}=\frac{1}{4} \sqrt{10+2 \sqrt{5}} \\
& \cos 72^{\circ}=\cos \left(90^{\circ}-18^{\circ}\right)=\sin 18^{\circ}=\frac{\sqrt{5}-1}{4}
\end{aligned}
$

Value Trigonometric Ratio of some Particular Angle (Applications) (Part 2)

Value of Trigonometric Ratios of some Particular Angles (Part 2)
4. $\cos 36^{\circ}$

We know that, $\cos 2 \theta=1-2 \sin ^2 \theta$
Put $\theta=18^{\circ}$
$\cos 2 \times 18^{\circ}=1-2 \sin ^2\left(18^{\circ}\right)$
$\cos 36^{\circ}=1-2 \sin ^2\left(18^{\circ}\right)$

$
\begin{aligned}
\cos 36^{\circ} & =1-2 \times\left(\frac{\sqrt{5}-1}{4}\right)^2 \\
& =1-2 \times \frac{5-2 \sqrt{5}+1}{16} \\
& =1-\frac{3-\sqrt{5}}{4} \\
& =\frac{4-3+\sqrt{5}}{4}=\frac{\sqrt{5}+1}{4}
\end{aligned}
$
Hence, $\cos 36^{\circ}=\frac{\sqrt{5}+1}{4}$

$
\begin{aligned}
& \text { 5. } \sin 36^{\circ} \\
& \sin ^2 \theta+\cos ^2 \theta=1 \\
& \sin ^2 \theta=1-\cos ^2 \theta \\
& \sin ^2\left(36^{\circ}\right)=1-\cos ^2\left(36^{\circ}\right) \\
& =1-\left(\frac{\sqrt{5}+1}{4}\right)^2 \\
& =1-\frac{6+2 \sqrt{5}}{16}=\frac{16-6-2 \sqrt{5}}{16}=\frac{10-2 \sqrt{5}}{16} \\
& \therefore \sin 36^{\circ}=\frac{\sqrt{10-2 \sqrt{5}}}{4} \quad\left[\because \sin 36^{\circ}>0\right] \\
& \text { 6. } \sin 54^{\circ} \text { and } \cos 54^{\circ} \\
& \sin 54^{\circ}=\sin \left(90^{\circ}-36^{\circ}\right)=\cos 36^{\circ} \\
& \therefore \sin 54^{\circ}=\frac{\sqrt{5}+1}{4} \\
& \cos 54^{\circ}=\cos \left(90^{\circ}-36^{\circ}\right)=\sin 36^{\circ} \\
& \therefore \cos 36^{\circ}=\frac{1}{4} \sqrt{10-2 \sqrt{5}}
\end{aligned}
$

7. $\cos 22.5^{\circ}$

Let $\theta=22.5^{\circ}$, then $2 \theta=45^{\circ}$
Use the Identity, $\cos 2 \theta=2 \cos ^2 \theta-1$

$
\begin{aligned}
\cos ^2\left(22.5^{\circ}\right) & =\frac{1+\cos \left(45^{\circ}\right)}{2} \\
& =\frac{1+\frac{1}{\sqrt{2}}}{2} \\
& =\frac{\sqrt{2}+1}{2 \sqrt{2}}=\frac{2+\sqrt{2}}{4} \\
\therefore \cos 22.5^{\circ} & =\frac{1}{2} \sqrt{2+\sqrt{2}}
\end{aligned}
$

8. $\sin 22.5^{\circ}$

Let $\theta=22.5^{\circ}$, then $2 \theta=45^{\circ}$
Use the Identity, $\cos 2 \theta=1-2 \sin ^2 \theta$

$
\begin{aligned}
\sin ^2\left(22.5^{\circ}\right) & =\frac{1-\cos \left(45^{\circ}\right)}{2} \\
& =\frac{1-\frac{1}{\sqrt{2}}}{2} \\
& =\frac{\sqrt{2}-1}{2 \sqrt{2}}=\frac{2-\sqrt{2}}{4} \\
\therefore \sin 22.5^{\circ} & =\frac{1}{2} \sqrt{2-\sqrt{2}}
\end{aligned}
$

Study it with Videos

Value Trigonometric Ratio of some Particular Angle (Applications) (Part 1)
Value Trigonometric Ratio of some Particular Angle (Applications) (Part 2)

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Books

Reference Books

Value Trigonometric Ratio of some Particular Angle (Applications) (Part 1)

Mathematics for Joint Entrance Examination JEE (Advanced) : Trigonometry

Page No. : 3.18

Line : 37

Value Trigonometric Ratio of some Particular Angle (Applications) (Part 2)

Mathematics for Joint Entrance Examination JEE (Advanced) : Trigonometry

Page No. : 3.18

Line : 56

E-books & Sample Papers

Get Answer to all your questions

Back to top