JEE Main Marks vs Percentile vs Rank 2025 - Calculate Percentile & Rank using Marks

Trigonometric Ratios of Allied Angles - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • 25 Questions around this concept.

Solve by difficulty

$\tan \left(180^{\circ}+\theta\right)+\cot \left(90^{\circ}+\theta\right)=$

The value of $\tan 1 ^{\circ} \tan 2 ^{\circ} \tan 3 ^{\circ} \ldots \tan 89 ^{\circ} \: \: \: is\\\\$

 

$
f(x)=3\left[\sin ^4\left(\frac{3 \pi}{2}-x\right)+\sin ^4(3 \pi+x)\right]-2\left[\sin ^6\left(\frac{\pi}{2}+x\right)+\sin ^6(5 \pi-x\right.
$
 , then for all permissible values of $x, f(x)$ is

JEE Main Session 2 Memory Based Questions: April 2- Shift 1 | Shift-2

JEE Main 2025: Mock Tests | PYQsRank PredictorCollege Predictor | Admit Card Link

New: Meet Careers360 experts in your city | Official Question Papee-Session 1

Apply to TOP B.Tech /BE Entrance exams: VITEEE | MET | AEEE | BITSAT

The value of $\left(\sin 70^{\circ}\right)\left(\cot 10^{\circ} \cot 70^{\circ}-1\right)$ is

Let $f$ be an odd function defined on the set of real numbers such that for $x \geqslant 0$, $f(x)=3 \sin x+4 \cos x$. Then $f(x)$ at $x=-\frac{11 \pi}{6}$ is equal to:

$\cos \left(-30^{\circ}\right)+\operatorname{cosec}\left(-60^{\circ}\right)+\tan \left(-45^{\circ}\right)=$

The value of $\cos 12^{\circ}+\cos 84^{\circ}+\cos 156^{\circ}+\cos 132^{\circ}$ is

VIT - VITEEE 2025

National level exam conducted by VIT University, Vellore | Ranked #11 by NIRF for Engg. | NAAC A++ Accredited | Last Date to Apply: 31st March | NO Further Extensions!

UPES B.Tech Admissions 2025

Ranked #42 among Engineering colleges in India by NIRF | Highest CTC 50 LPA , 100% Placements

Let
$
|\cos \theta \cos (60-\theta) \cos (60-\theta)| \leq \frac{1}{8}, \theta \in[0,2 \pi]
$

Then, the sum of all $\theta \in[0,2 \pi]$, where $\cos 3 \theta$ attains its maximum value, is :

Concepts Covered - 2

Allied Angles (Part 1)

Allied Angles (Part 1)

Two angles are called allied if their sum or difference is a multiple of π/2   

  • sin (900 - θ) = cos (θ)

  • cos (900 - θ) = sin (θ)

  • tan (900 - θ) = cot (θ)

  • csc (900 - θ) = sec (θ)          

  • sec (900 - θ) = csc (θ)

  • cot (900 - θ) = tan (θ)

  • sin (900 + θ) = cos (θ)

  • cos (900 + θ) = - sin (θ)

  • tan (900 + θ) = - cot (θ)

  • csc (900 + θ) = sec (θ)          

  • sec (900 + θ) = - csc (θ)

  • cot (900 + θ) = - tan (θ)

Allied Angles (Part 2)

Allied Angles (Part 2)

$\begin{aligned} & \sin \left(180^{\circ}-\theta\right)=\sin (\theta) \\ & \cos \left(180^{\circ}-\theta\right)=-\cos (\theta) \\ & \tan \left(180^{\circ}-\theta\right)=-\tan (\theta) \\ & \csc \left(180^{\circ}-\theta\right)=\csc (\theta) \\ & \sec \left(180^{\circ}-\theta\right)=-\sec (\theta) \\ & \cot \left(180^{\circ}-\theta\right)=-\cot (\theta) \\ & \sin \left(180^{\circ}+\theta\right)=-\sin (\theta) \\ & \cos \left(180^{\circ}+\theta\right)=-\cos (\theta) \\ & \tan \left(180^{\circ}+\theta\right)=\tan (\theta) \\ & \csc \left(180^{\circ}+\theta\right)=-\csc (\theta) \\ & \sec \left(180^{\circ}+\theta\right)=-\sec (\theta) \\ & \cot \left(180^{\circ}+\theta\right)=\cot (\theta)\end{aligned}$

AID TO REMEMBER

All the trigonometric functions of a real number of form $2 n(\pi / 2) \pm x(n \in I)$ (i.e. an even multiple of $\pi / 2 \pm x$ ) are numerically equal to the same function of $x$, with sign depending on the quadrant in which terminal side of the angles lies.

For example $\cos (\pi+x)=\cos (2(\pi / 2)+x)=-\cos (x)$, -ve sign was chosen because $(\pi+x)$ lies in 3rd quadrant and 'cos' is -ve in the third quadrant.

All the trigonometric functions of a real number of the form $(2 n+1) \pi / 2 \pm x(n \in I)$ (i.e. an even multiple of $\pi / 2 \pm x)$ is numerically equal to the co-function of $x$, with sign depending on the quadrant in which terminal side of the angles lies.

Note that 'sin' and 'cos' are co-functions of each other, 'tan' and 'cot' are co-functions of each other and 'sec' and 'cosec' are cofunctions of each other.

For example: $\sec (\pi / 2+x)=-\operatorname{cosec}(x)$, as $(\pi / 2+x)$ lies in the 2 nd quadrant and 'sec' is -ve in $2 n d$ quadrant.

 

Study it with Videos

Allied Angles (Part 1)
Allied Angles (Part 2)

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Books

Reference Books

Allied Angles (Part 1)

Mathematics for Joint Entrance Examination JEE (Advanced) : Trigonometry

Page No. : 2.20

Line : 47

Allied Angles (Part 2)

Mathematics for Joint Entrance Examination JEE (Advanced) : Trigonometry

Page No. : 2.20

Line : 5

E-books & Sample Papers

Get Answer to all your questions

Back to top