Careers360 Logo
JEE Main 2025 - Registration (Open), Exam Dates Out, Syllabus, Pattern, Previous Year Papers

Trigonometric Ratios of Allied Angles - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • 11 Questions around this concept.

Solve by difficulty

Evaluate the value of  \mathrm{ tan\ 60^{\circ}+cot\ 60^{\circ}}?

The value of \mathrm{ \frac{sin\left ( 90^{\circ}+\theta \right )sin\left ( 180^{\circ}+\theta \right )}{cos\left ( 90^{\circ}+\theta \right )}} is?

 

Concepts Covered - 2

Allied Angles (Part 1)

Allied Angles (Part 1)

Two angles are called allied if their sum or difference is a multiple of π/2   

  • sin (900 - θ) = cos (θ)

  • cos (900 - θ) = sin (θ)

  • tan (900 - θ) = cot (θ)

  • csc (900 - θ) = sec (θ)          

  • sec (900 - θ) = csc (θ)

  • cot (900 - θ) = tan (θ)

 

  • sin (900 + θ) = cos (θ)

  • cos (900 + θ) = - sin (θ)

  • tan (900 + θ) = - cot (θ)

  • csc (900 + θ) = sec (θ)          

  • sec (900 + θ) = - csc (θ)

  • cot (900 + θ) = - tan (θ)

Allied Angles (Part 2)

Allied Angles (Part 2)

  • sin (1800 - θ) = sin (θ)

  • cos (1800 - θ) = - cos (θ)

  • tan (1800 - θ) = - tan (θ)

  • csc (1800 - θ) = csc (θ)          

  • sec (1800 - θ) = - sec (θ)

  • cot (1800 - θ) = - cot (θ)

 

  • sin (1800 + θ) = - sin (θ)

  • cos (1800 + θ) = - cos (θ)

  • tan (1800 + θ) = tan (θ)

  • csc (1800 + θ) = - csc (θ)          

  • sec (1800 + θ) = - sec (θ)

  • cot (1800 + θ) = cot (θ)

AID TO REMEMBER

  1. All the trigonometric function of a real number of the form 2n(π/2) ± x ( n ∈ I) (i.e. an even multiple of π/2 ± x) is numerically equal to the same function of x, with sign depending on the quadrant in which terminal side of the angles lies.

        For example: cos (π + x) = cos (2(π/2) + x) = - cos (x), -ve sign chosen because (π + x) lies in 3rd quadrant and ‘cos’ is -ve in third quadrant.

  

  1. All the trigonometric function of a real number of the form (2n + 1)π/2 ± x ( n ∈ I) (i.e. an even multiple of π/2 ± x) is numerically equal to the co-function of x, with sign depending on the quadrant in which terminal side of the angles lies.

            Note that ‘sin’ and ‘cos’ are co-functions of each other, ‘tan’ and ‘cot’ are co-function of each other and ‘sec’ and ‘cosec’ are co-function of each other.

            For example: sec (π/2 +x ) = - cosec (x), as (π/2 +x) lies in the 2nd quadrant and ‘sec’ is -ve in 2nd quadrant.

 

Study it with Videos

Allied Angles (Part 1)
Allied Angles (Part 2)

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Books

Reference Books

Allied Angles (Part 1)

Mathematics for Joint Entrance Examination JEE (Advanced) : Trigonometry

Page No. : 2.20

Line : 47

Allied Angles (Part 2)

Mathematics for Joint Entrance Examination JEE (Advanced) : Trigonometry

Page No. : 2.20

Line : 5

E-books & Sample Papers

Get Answer to all your questions

Back to top