Amrita Vishwa Vidyapeetham | B.Tech Admissions 2025
ApplyRecognized as Institute of Eminence by Govt. of India | NAAC ‘A++’ Grade | Upto 75% Scholarships | Extended Application Deadline: 30th Jan
19 Questions around this concept.
$\tan \left(180^{\circ}+\theta\right)+\cot \left(90^{\circ}+\theta\right)=$
The value of $\tan 1 ^{\circ} \tan 2 ^{\circ} \tan 3 ^{\circ} \ldots \tan 89 ^{\circ} \: \: \: is\\\\$
Let $f$ be an odd function defined on the set of real numbers such that for $x \geqslant 0$, $f(x)=3 \sin x+4 \cos x$. Then $f(x)$ at $x=-\frac{11 \pi}{6}$ is equal to:
JEE Main 2025: Rank Predictor | College Predictor
JEE Main 2025 Memory Based Question: Jan 29- Shift 1 | shift-2 | Jan 28- Shift 1 | Shift-2 | Jan 22, 23 & 24 (Shift 1 & 2)
JEE Main 2025: High Scoring Topics | Sample Papers | Mock Tests | PYQs
$\cos \left(-30^{\circ}\right)+\operatorname{cosec}\left(-60^{\circ}\right)+\tan \left(-45^{\circ}\right)=$
Allied Angles (Part 1)
Two angles are called allied if their sum or difference is a multiple of π/2
sin (900 - θ) = cos (θ)
cos (900 - θ) = sin (θ)
tan (900 - θ) = cot (θ)
csc (900 - θ) = sec (θ)
sec (900 - θ) = csc (θ)
cot (900 - θ) = tan (θ)
sin (900 + θ) = cos (θ)
cos (900 + θ) = - sin (θ)
tan (900 + θ) = - cot (θ)
csc (900 + θ) = sec (θ)
sec (900 + θ) = - csc (θ)
cot (900 + θ) = - tan (θ)
Allied Angles (Part 2)
$\begin{aligned} & \sin \left(180^{\circ}-\theta\right)=\sin (\theta) \\ & \cos \left(180^{\circ}-\theta\right)=-\cos (\theta) \\ & \tan \left(180^{\circ}-\theta\right)=-\tan (\theta) \\ & \csc \left(180^{\circ}-\theta\right)=\csc (\theta) \\ & \sec \left(180^{\circ}-\theta\right)=-\sec (\theta) \\ & \cot \left(180^{\circ}-\theta\right)=-\cot (\theta) \\ & \sin \left(180^{\circ}+\theta\right)=-\sin (\theta) \\ & \cos \left(180^{\circ}+\theta\right)=-\cos (\theta) \\ & \tan \left(180^{\circ}+\theta\right)=\tan (\theta) \\ & \csc \left(180^{\circ}+\theta\right)=-\csc (\theta) \\ & \sec \left(180^{\circ}+\theta\right)=-\sec (\theta) \\ & \cot \left(180^{\circ}+\theta\right)=\cot (\theta)\end{aligned}$
AID TO REMEMBER
All the trigonometric functions of a real number of form $2 n(\pi / 2) \pm x(n \in I)$ (i.e. an even multiple of $\pi / 2 \pm x$ ) are numerically equal to the same function of $x$, with sign depending on the quadrant in which terminal side of the angles lies.
For example $\cos (\pi+x)=\cos (2(\pi / 2)+x)=-\cos (x)$, -ve sign was chosen because $(\pi+x)$ lies in 3rd quadrant and 'cos' is -ve in the third quadrant.
All the trigonometric functions of a real number of the form $(2 n+1) \pi / 2 \pm x(n \in I)$ (i.e. an even multiple of $\pi / 2 \pm x)$ is numerically equal to the co-function of $x$, with sign depending on the quadrant in which terminal side of the angles lies.
Note that 'sin' and 'cos' are co-functions of each other, 'tan' and 'cot' are co-functions of each other and 'sec' and 'cosec' are cofunctions of each other.
For example: $\sec (\pi / 2+x)=-\operatorname{cosec}(x)$, as $(\pi / 2+x)$ lies in the 2 nd quadrant and 'sec' is -ve in $2 n d$ quadrant.
"Stay in the loop. Receive exam news, study resources, and expert advice!"