180 Marks in JEE Mains Percentile 2025 - Check Details

Trigonometric Ratios of Allied Angles - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • 11 Questions around this concept.

Solve by difficulty

Evaluate the value of  $\mathrm{ tan\ 60^{\circ}+cot\ 60^{\circ}}$?

The value of \mathrm{ \frac{sin\left ( 90^{\circ}+\theta \right )sin\left ( 180^{\circ}+\theta \right )}{cos\left ( 90^{\circ}+\theta \right )}} is?

 

Concepts Covered - 2

Allied Angles (Part 1)

Allied Angles (Part 1)

Two angles are called allied if their sum or difference is a multiple of π/2   

  • sin (900 - θ) = cos (θ)

  • cos (900 - θ) = sin (θ)

  • tan (900 - θ) = cot (θ)

  • csc (900 - θ) = sec (θ)          

  • sec (900 - θ) = csc (θ)

  • cot (900 - θ) = tan (θ)

  • sin (900 + θ) = cos (θ)

  • cos (900 + θ) = - sin (θ)

  • tan (900 + θ) = - cot (θ)

  • csc (900 + θ) = sec (θ)          

  • sec (900 + θ) = - csc (θ)

  • cot (900 + θ) = - tan (θ)

Allied Angles (Part 2)

Allied Angles (Part 2)

$\begin{aligned} & \sin \left(180^{\circ}-\theta\right)=\sin (\theta) \\ & \cos \left(180^{\circ}-\theta\right)=-\cos (\theta) \\ & \tan \left(180^{\circ}-\theta\right)=-\tan (\theta) \\ & \csc \left(180^{\circ}-\theta\right)=\csc (\theta) \\ & \sec \left(180^{\circ}-\theta\right)=-\sec (\theta) \\ & \cot \left(180^{\circ}-\theta\right)=-\cot (\theta) \\ & \sin \left(180^{\circ}+\theta\right)=-\sin (\theta) \\ & \cos \left(180^{\circ}+\theta\right)=-\cos (\theta) \\ & \tan \left(180^{\circ}+\theta\right)=\tan (\theta) \\ & \csc \left(180^{\circ}+\theta\right)=-\csc (\theta) \\ & \sec \left(180^{\circ}+\theta\right)=-\sec (\theta) \\ & \cot \left(180^{\circ}+\theta\right)=\cot (\theta)\end{aligned}$

AID TO REMEMBER

All the trigonometric functions of a real number of form $2 n(\pi / 2) \pm x(n \in I)$ (i.e. an even multiple of $\pi / 2 \pm x$ ) are numerically equal to the same function of $x$, with sign depending on the quadrant in which terminal side of the angles lies.

For example $\cos (\pi+x)=\cos (2(\pi / 2)+x)=-\cos (x)$, -ve sign was chosen because $(\pi+x)$ lies in 3rd quadrant and 'cos' is -ve in the third quadrant.

All the trigonometric functions of a real number of the form $(2 n+1) \pi / 2 \pm x(n \in I)$ (i.e. an even multiple of $\pi / 2 \pm x)$ is numerically equal to the co-function of $x$, with sign depending on the quadrant in which terminal side of the angles lies.

Note that 'sin' and 'cos' are co-functions of each other, 'tan' and 'cot' are co-functions of each other and 'sec' and 'cosec' are cofunctions of each other.

For example: $\sec (\pi / 2+x)=-\operatorname{cosec}(x)$, as $(\pi / 2+x)$ lies in the 2 nd quadrant and 'sec' is -ve in $2 n d$ quadrant.

 

Study it with Videos

Allied Angles (Part 1)
Allied Angles (Part 2)

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Books

Reference Books

Allied Angles (Part 1)

Mathematics for Joint Entrance Examination JEE (Advanced) : Trigonometry

Page No. : 2.20

Line : 47

Allied Angles (Part 2)

Mathematics for Joint Entrance Examination JEE (Advanced) : Trigonometry

Page No. : 2.20

Line : 5

E-books & Sample Papers

Get Answer to all your questions

Back to top