JEE Main Official Answer Key 2025 Release Date Soon - How to Download PDF

Double Angle Formulas - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • Double Angle Formula and Reduction Formula is considered one of the most asked concept.

  • 36 Questions around this concept.

Solve by difficulty

If $6 \cos 2 \theta+2 \cos ^2 \theta / 2+2 \sin ^2 \theta=0,-\pi<\theta<\pi$, then $\theta=$

$\left(1+\tan 22^{\circ}\right)\left(1+\tan 23^{\circ}\right)$ equals

If $\sin \alpha=\frac{3}{5}$, find $\sin 2 \alpha$ and $\cos 2 \alpha\left(0^{\circ}<\alpha<90^{\circ}\right)$

JEE Main 2025: Rank Predictor |  College Predictor

JEE Main 2025 Memory Based Question: Jan 29- Shift 1 | shift-2 | Jan 28- Shift 1 Shift-2 | Jan 22, 23 & 24 (Shift 1 & 2)

JEE Main 2025: High Scoring Topics | Sample Papers | Mock Tests | PYQs

If $\sin A=3 / 5$, where $0<A<90$. Then the value of $\sin (2 A)$?

The value of $\tan 3A - \tan 2A -\tan A$ is equal to

Concepts Covered - 1

Double Angle Formula and Reduction Formula

Double Angle Formula and Reduction Formula

$\begin{aligned} \sin (2 \theta) & =2 \sin \theta \cos \theta \\ & =\frac{2 \tan \theta}{1+\tan ^2 \theta} \\ \cos (2 \theta) & =\cos ^2 \theta-\sin ^2 \theta \\ & =1-2 \sin ^2 \theta \\ & =2 \cos ^2 \theta-1 \\ & =\frac{1-\tan ^2 \theta}{1+\tan ^2 \theta} \\ \tan (2 \theta) & =\frac{2 \tan \theta}{1-\tan ^2 \theta}\end{aligned}$

Proof:

The double-angle formulas are a special case of the sum formulas, where α = β.

For sine

$
\sin (\alpha+\beta)=\sin \alpha \cos \beta+\cos \alpha \sin \beta
$
If we let $\alpha=\beta=\theta$, then we have

$
\begin{aligned}
& \sin (\theta+\theta)=\sin \theta \cos \theta+\cos \theta \sin \theta \\
& \sin (2 \theta)=2 \sin \theta \cos \theta
\end{aligned}
$
For cosine

$
\cos (\alpha+\beta)=\cos \alpha \cos \beta-\sin \alpha \sin \beta
$
Letting $\alpha=\beta=\theta$, we have

$
\begin{aligned}
& \cos (\theta+\theta)=\cos \theta \cos \theta-\sin \theta \sin \theta \\
& \cos (2 \theta)=\cos ^2 \theta-\sin ^2 \theta
\end{aligned}
$

We can write this formula in different forms as per the requirement of the question,

$
\begin{aligned}
\cos (2 \theta) & =\cos ^2 \theta-\sin ^2 \theta \\
& =\left(1-\sin ^2 \theta\right)-\sin ^2 \theta \\
& =1-2 \sin ^2 \theta
\end{aligned}
$
The second variation is:

$
\begin{aligned}
\cos (2 \theta) & =\cos ^2 \theta-\sin ^2 \theta \\
& =\cos ^2 \theta-\left(1-\cos ^2 \theta\right) \\
& =2 \cos ^2 \theta-1
\end{aligned}
$

For tan
Replacing $\alpha=\beta=\theta$ in the sum formula gives

$
\begin{aligned}
\tan (\alpha+\beta) & =\frac{\tan \alpha+\tan \beta}{1-\tan \alpha \tan \beta} \\
\tan (\theta+\theta) & =\frac{\tan \theta+\tan \theta}{1-\tan \theta \tan \theta} \\
\tan (2 \theta) & =\frac{2 \tan \theta}{1-\tan ^2 \theta}
\end{aligned}
$
Reduction Formula
The double-angle formulas can be used to derive the reduction formulas, which are formulas we can use to reduce the power of a given expression involving even powers of sine or cosine.

$
\begin{aligned}
& \sin ^2 \theta=\frac{1-\cos (2 \theta)}{2} \\
& \cos ^2 \theta=\frac{1+\cos (2 \theta)}{2} \\
& \tan ^2 \theta=\frac{1-\cos (2 \theta)}{1+\cos (2 \theta)}
\end{aligned}
$

Study it with Videos

Double Angle Formula and Reduction Formula

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Books

Reference Books

Double Angle Formula and Reduction Formula

Mathematics for Joint Entrance Examination JEE (Advanced) : Trigonometry

Page No. : 3.11

Line : 26

E-books & Sample Papers

Get Answer to all your questions

Back to top