NIT Rourkela Cutoff JEE Main 2026 - Opening and Closing Ranks

Graphs of General Trigonometric Functions - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • 33 Questions around this concept.

Solve by difficulty

Range of  $f(x)=\sin|3x^3| \ \ x\epsilon R$

The number of solutions of the equation $x+2 \tan x=\frac{\pi}{2}$ in the interval $[0,2 \pi]$ is :

Which of the following can be a graph of f(x ) = $\tan 3 x ?$

New: JEE Main 2026 Session 2 Registration Starts; Apply Now

JEE Main 2026 Ques & Sol's: 28 Jan: Shift-2 | Shift-1 | All Shift (Session 1)

JEE Main 2026 Tools: Rank Predictor | College Predictor

Comprehensive Guide: IIT'sNIT'sIIIT's

$\cos x<\frac{1}{2}$ for $x$ in the interval $(0,2 \pi):$

$\cos ^{-1}\left(\frac{\sqrt{3}}{2}\right)=$

$\sin x>\frac{1}{2}$ for $x$ in the interval $(-2 \pi, 2 \pi)$ :

If $4\sin ^{2}\alpha =1,$ then the values of alpha are

Amity University-Noida B.Tech Admissions 2026

Among top 100 Universities Globally in the Times Higher Education (THE) Interdisciplinary Science Rankings 2026

UPES B.Tech Admissions 2026

Ranked #43 among Engineering colleges in India by NIRF | Highest Package 1.3 CR , 100% Placements

If $x=2\sin^{2}\alpha - \cos2\alpha, then \:\: x \:\: lies \:\: in\:\: the \:\: interval$

What is the solution of $cotx$ $>1$ in the interval $(0,2 \pi)$

JEE Main 2026 Rank Predictor
Use the JEE Main 2026 Rank Predictor to estimate your expected rank based on your scores or percentile and plan your college options smartly.
Try Now

What is the solution set of the equation $\csc x>1$ in the interval $[0,2 \pi$ ]?

Concepts Covered - 2

Graph of Trigonometric Function (Part 1)

Graph of Trigonometric Function (Part 1)

Sine Function 

$y=f(x)=\sin (x)$

Domain is R

Range is  [-1, 1]

Cosine Function

$y=f(x)=\cos (x)$

Domain is R 

Range is [-1, 1]

Tangent Function

$y=f(x)=\tan (x)$

$\mathrm{Domain\;is\;\;\mathbb{R}-\left \{ \frac{(2n+1)\pi}{2},\;n\in\;\mathbb{I} \right \}}$

Range is R

Graph of Trigonometric Function (Part 2)

Graph of Trigonometric Function (Part 2)

Cosecant Function

$y=f(x)=\operatorname{cosec}(x)$

 

Domain is R - $\{\mathrm{n} \pi, \mathrm{n} \in \mathrm{I}$ (Integers) $\}$
Range is $\mathrm{R}-(-1,1)$
Period is $2 \pi$

Secant Function

$y=f(x)=\sec (x)$

$\mathrm{Domain\;is\;\;\mathbb{R}-\left \{ \frac{(2n+1)\pi}{2},\;n\in\;\mathbb{I} \right \}}$

The range is $\mathrm{R}-(-1,1)$
Period is $2 \pi$

Cotangent Function

$y=f(x)=\cot (x)$

 

Domain is R - $\{\mathrm{n} \pi, \mathrm{n} \in \mathrm{I}$ (Integers) $\}$
Range is $R$
Period is $2 \pi$

Study it with Videos

Graph of Trigonometric Function (Part 1)
Graph of Trigonometric Function (Part 2)

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Books

Reference Books

Graph of Trigonometric Function (Part 1)

Mathematics for Joint Entrance Examination JEE (Advanced) : Trigonometry

Page No. : 2.13

Line : 45

Graph of Trigonometric Function (Part 2)

Mathematics for Joint Entrance Examination JEE (Advanced) : Trigonometry

Page No. : 2.14

Line : 4

E-books & Sample Papers

Get Answer to all your questions