UPES B.Tech Admissions 2025
Ranked #42 among Engineering colleges in India by NIRF | Highest CTC 50 LPA , 100% Placements
Trigonometric Ratio for Compound Angles (Some more Result) is considered one the most difficult concept.
Trigonometric Ratio for Compound Angles (Part 1) is considered one of the most asked concept.
68 Questions around this concept.
$\cos \left(15^{\circ}\right)=$
$\cos \left(75^{\circ}\right)=$
$\sin \left(15^{\circ}\right)=$
JEE Main 2025: Rank Predictor | Admit Card Link
JEE Main 2025: Sample Papers | Syllabus | Mock Tests | PYQs | Video Lectures
JEE Main 2025: Preparation Guide | High Scoring Topics | Free Crash Course
$\sin 163^{\circ} \cos 347^{\circ}+\sin 73^{\circ} \sin 167^{\circ}=$
$2\cos 15^{\circ}\sin 75^{\circ}=$
$sin (75^{\circ})=$
Algebraic sum of two or more angles is called:
Ranked #42 among Engineering colleges in India by NIRF | Highest CTC 50 LPA , 100% Placements
Recognized as Institute of Eminence by Govt. of India | NAAC ‘A++’ Grade | Upto 75% Scholarships | Last Date to Apply: 25th Jan
$\tan 41^{\circ}-\tan 26^{\circ}-\tan 15^{\circ}\\$ equals
$\cot \left(75^{\circ}\right)=$
$\frac{\cos 12^{\circ}-\sin 12^{\circ}}{\cos 12^{\circ}+\sin 12^{\circ}}+\frac{\sin 147^{\circ}}{\cos 147^{\circ}}=$
Trigonometric Ratio for Compound Angles (Part 1)
The sum or difference of two or more angles is called a compound angle. If $A, B$ and $C$ are any angle then $A+B, A-B, A+B+C, A+$ $B$ - C etc all are compound angles.
1. $\cos (\alpha-\beta)=\cos \alpha \cos \beta+\sin \alpha \sin \beta$
2. $\cos (\alpha+\beta)=\cos \alpha \cos \beta-\sin \alpha \sin \beta$
3. $\sin (\alpha-\beta)=\sin \alpha \cos \beta-\cos \alpha \sin \beta$
4. $\sin (\alpha+\beta)=\sin \alpha \cos \beta+\cos \alpha \sin \beta$
Proof:
1. cos (α - β)
Let's consider two points on the unit circle. Point $P$ is at an angle $\alpha$ from the positive $x$-axis with coordinates ( $\cos \alpha$, sin $\alpha$ ) and point $Q$ is at an angle of $\beta$ from the positive $x$-axis with coordinates $(\cos \beta, \sin \beta)$. Note the measure of angle POQ is $\alpha-\beta$. Label two more points: $A$ at an angle of $(\alpha-\beta)$ from the positive $x$-axis with coordinates $(\cos (\alpha-\beta), \sin (\alpha-\beta)$ ); and point $B$ with coordinates $(1,0)$. Triangle POQ is a rotation of triangle AOB and thus the distance from P to Q is the same as the distance from A to B .
We can find the distance from P to Q using the distance formula.
$\begin{aligned} & d_{P Q}=\sqrt{(\cos \alpha-\cos \beta)^2+(\sin \alpha-\sin \beta)^2} \\ & \quad=\sqrt{\cos ^2 \alpha-2 \cos \alpha \cos \beta+\cos ^2 \beta+\sin ^2 \alpha-2 \sin \alpha \sin \beta+\sin ^2 \beta} \\ & =\sqrt{\left(\cos ^2 \alpha+\sin ^2 \alpha\right)+\left(\cos ^2 \beta+\sin ^2 \beta\right)-2 \cos \alpha \cos \beta-2 \sin \alpha \sin \beta} \\ & =\sqrt{1+1-2 \cos \alpha \cos \beta-2 \sin \alpha \sin \beta} \\ & =\sqrt{2-2 \cos \alpha \cos \beta-2 \sin \alpha \sin \beta}\end{aligned}$
Similarly, using the distance formula we can find the distance from A to B.
$
\begin{aligned}
& d_{A B}=\sqrt{(\cos (\alpha-\beta)-1)^2+(\sin (\alpha-\beta)-0)^2} \\
& \quad=\sqrt{\cos ^2(\alpha-\beta)-2 \cos (\alpha-\beta)+1+\sin ^2(\alpha-\beta)} \\
& =\sqrt{\left(\cos ^2(\alpha-\beta)+\sin ^2(\alpha-\beta)\right)-2 \cos (\alpha-\beta)+1} \\
& =\sqrt{1-2 \cos (\alpha-\beta)+1} \\
& =\sqrt{2-2 \cos (\alpha-\beta)}
\end{aligned}
$
Because the two distances are the same, we set them equal to each other and simplify
$
\begin{gathered}
\sqrt{2-2 \cos \alpha \cos \beta-2 \sin \alpha \sin \beta}=\sqrt{2-2 \cos (\alpha-\beta)} \\
2-2 \cos \alpha \cos \beta-2 \sin \alpha \sin \beta=2-2 \cos (\alpha-\beta)
\end{gathered}
$
Finally, we subtract 2 from both sides and divide both sides by -2
$
\cos \alpha \cos \beta+\sin \alpha \sin \beta=\cos (\alpha-\beta)
$
$
\text { 2. } \begin{aligned}
\cos & (\alpha+\beta) \\
\quad & =\cos (\alpha-(-\beta)) \\
\quad= & \cos \alpha \cos (-\beta)+\sin \alpha \sin (-\beta) \\
& =\cos \alpha \cos \beta-\sin \alpha \sin \beta
\end{aligned}
$
Hence, $\cos (\alpha+\beta)=\cos \alpha \cos \beta-\sin \alpha \sin \beta$
3. Sine Compound Angle Formulae
$
\begin{aligned}
& \text { We have } \\
& \qquad \begin{aligned}
\sin (\alpha-\beta) & =\cos \left(90^{\circ}-(\alpha-\beta)\right) \\
& =\cos \left(\left(90^{\circ}-\alpha\right)+\beta\right) \\
& =\cos \left(90^{\circ}-\alpha\right) \cos \beta-\sin \left(90^{\circ}-\alpha\right) \sin \beta \\
& =\sin \alpha \cos \beta-\cos \alpha \sin \beta
\end{aligned} \\
& \begin{aligned}
\sin (\alpha+\beta) & =\sin (\alpha-(-\beta)) \\
& =\sin \alpha \cos (-\beta)-\cos \alpha \sin (-\beta) \\
& =\sin \alpha \cos \beta+\cos \alpha \sin \beta
\end{aligned}
\end{aligned}
$
Trigonometric Ratio for Compound Angles (Part 2)
$\begin{aligned} & \tan (\alpha+\beta)=\frac{\tan \alpha+\tan \beta}{1-\tan \alpha \tan \beta} \\ & \tan (\alpha-\beta)=\frac{\tan \alpha-\tan \beta}{1+\tan \alpha \tan \beta} \\ & \cot (\alpha+\beta)=\frac{\cot \alpha \cot \beta-1}{\cot \alpha+\cot \beta} \\ & \cot (\alpha-\beta)=\frac{\cot \alpha \cot \beta+1}{\cot \beta-\cot \alpha}\end{aligned}$
Proof:
Finding the sum of two angles formula for tangent involves taking the quotient of the sum formulas for sine and cosine and simplifying,
$
\begin{aligned}
\tan (\alpha+\beta) & =\frac{\sin (\alpha+\beta)}{\cos (\alpha+\beta)} \\
& =\frac{\sin \alpha \cos \beta+\cos \alpha \sin \beta}{\cos \alpha \cos \beta-\sin \alpha \sin \beta}
\end{aligned}
$
[Divide the numerator and denominator by $\cos \alpha \cos \beta$ ]
$
\begin{aligned}
& =\frac{\frac{\sin \alpha \cos \beta+\cos \alpha \sin \beta}{\cos \alpha \cos \beta}}{\frac{\cos \alpha \cos \beta-\sin \alpha \sin \beta}{\cos \alpha \cos \beta}} \\
& =\frac{\frac{\sin \alpha}{\cos \alpha}+\frac{\sin \beta}{\cos \beta}}{1-\frac{\sin \alpha \sin \beta}{\cos \alpha \cos \beta}} \\
& =\frac{\tan \alpha+\tan \beta}{1-\tan \alpha \tan \beta}
\end{aligned}
$
For the difference of tangent, put - β in place of β in the above result.
Cot Formulae
$
\begin{aligned}
\cot (\alpha+\beta) & =\frac{\cos (\alpha+\beta)}{\sin (\alpha+\beta)} \\
& =\frac{\cos \alpha \cos \beta-\sin \alpha \sin \beta}{\sin \alpha \cos \beta+\cos \alpha \sin \beta} \\
& =\frac{\frac{\cos \alpha \cos \beta-\sin \alpha \sin \beta}{\sin \alpha \sin \beta}}{\frac{\sin \alpha \cos \beta+\cos \alpha \sin \beta}{\sin \alpha \sin \beta}}
\end{aligned}
$
[Divide the numerator and denominator by $\sin \alpha \sin \beta$ ]
$
\begin{aligned}
& =\frac{\frac{\cos \alpha \cos \beta}{\sin \alpha \sin \beta}-\frac{\sin \alpha \sin \beta}{\sin \alpha \sin \beta}}{\frac{\sin \alpha \alpha \cos \beta}{\sin \alpha \sin \beta}+\frac{\cos \alpha \sin \beta}{\sin \alpha \sin \beta}} \\
& =\frac{\cot \alpha \cot \beta-1}{\cot \beta+\cot \alpha}
\end{aligned}
$
For the difference of cotangent, put - $\beta$ in place of $\beta$ in the above result
Trigonometric Ratio for Compound Angles (Part 3)
Proof Cotangent of the Sum and Difference of two Angles
$
\begin{aligned}
& \cot (\alpha+\beta)=\frac{\cot \alpha \cot \beta-1}{\cot \alpha+\cot \beta} \\
& \cot (\alpha-\beta)=\frac{\cot \alpha \cot \beta+1}{\cot \beta-\cot \alpha}
\end{aligned}
$
$
\begin{aligned}
\cot (\alpha+\beta) & =\frac{\cos (\alpha+\beta)}{\sin (\alpha+\beta)} \\
& =\frac{\cos \alpha \cos \beta-\sin \alpha \sin \beta}{\sin \alpha \cos \beta+\cos \alpha \sin \beta} \\
& =\frac{\frac{\cos \alpha \cos \beta-\sin \alpha \sin \beta}{\sin \alpha \sin \beta}}{\frac{\sin \alpha \cos \beta+\cos \alpha \sin \beta}{\sin \alpha \sin \beta}}
\end{aligned}
$
[Divide the numerator and denominator by $\sin \alpha \sin \beta$ ]
$
\begin{aligned}
& =\frac{\frac{\cos \alpha \cos \beta}{\sin \alpha \sin \beta}-\frac{\sin \alpha \sin \beta}{\sin \alpha \sin \beta}}{\frac{\sin \alpha \cos \beta}{\sin \alpha \sin \beta}+\frac{\cos \alpha \sin \beta}{\sin \alpha \sin \beta}} \\
& =\frac{\cot \alpha \cot \beta-1}{\cot \beta+\cot \alpha}
\end{aligned}
$
For the difference of cotangent, put - $\beta$ in place of $\beta$ in the above derivation.
Trigonometric Ratio for Compound Angles (Some More Results)
$
\begin{aligned}
& \text { 1. } \sin (A+B) \sin (A-B)=\sin ^2 A-\sin ^2 B=\cos ^2 B-\cos ^2 A \\
& \text { 2. } \cos (A+B) \cos (A-B)=\cos ^2 A-\sin ^2 B=\cos ^2 B-\sin ^2 A \\
& \text { 3. } \tan (A+B+C)=\frac{\tan A+\tan B+\tan C-\tan A \tan B \tan C}{1-\tan A \tan B-\tan B \tan C-\tan C \tan A}
\end{aligned}
$
Proof:
$
\begin{aligned}
\sin (A+B) \sin (A-B) & =(\sin A \cos B+\cos A \sin B)(\sin A \cos B-\cos A \sin B) \\
& =\sin ^2 A \cos ^2 B-\cos ^2 A \sin ^2 B \\
& =\sin ^2 A\left(1-\sin ^2 B\right)-\left(1-\sin ^2 A\right) \sin ^2 B \\
& =\sin ^2 A-\sin ^2 A \sin ^2 B-\sin ^2 B+\sin ^2 A \sin ^2 B=\sin ^2 A-\sin ^2 B \\
& =\left(1-\cos ^2 A\right)-\left(1-\cos ^2 B\right)=\cos ^2 B-\cos ^2 A
\end{aligned}
$
1.
2.
$
\begin{aligned}
\cos (A+B) \cos (A-B) & =(\cos A \cos B-\sin A \sin B)(\cos A \cos B+\sin A \sin B) \\
& =\cos ^2 A \cos ^2 B-\sin ^2 A \sin ^2 B \\
& =\cos ^2 A\left(1-\sin ^2 B\right)-\left(1-\cos ^2 A\right) \sin ^2 B=\cos ^2 A-\sin ^2 B \\
& =\left(1-\sin ^2 A\right)-\left(1-\cos ^2 B\right)=\cos ^2 B-\sin ^2 A
\end{aligned}
$
3.
$
\begin{aligned}
& \tan (A+B+C)=\tan ((A+B)+C)=\frac{\tan (A+B)+\tan C}{1-\tan (A+B) \tan C} \\
& =\frac{\frac{\tan A+\tan B}{1-\tan A \tan B}+\tan C}{1-\left(\frac{\tan A \tan B}{1-\tan A \tan B}\right) \tan C}=\frac{\tan A+\tan B+\tan C-\tan A \tan B \tan C}{1-\tan A \tan B-\tan B \tan C-\tan C \tan A}
\end{aligned}
$
"Stay in the loop. Receive exam news, study resources, and expert advice!"