Careers360 Logo
Computer Science: Placements And Salaries At India’s Top Engineering Colleges

Trigonometric Ratios of Compound Angles - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • Trigonometric Ratio for Compound Angles (Some more Result) is considered one the most difficult concept.

  • Trigonometric Ratio for Compound Angles (Part 1) is considered one of the most asked concept.

  • 39 Questions around this concept.

Solve by difficulty

If \tan 15^{\circ}+\frac{1}{\tan 75^{\circ}}+\frac{1}{\tan 105^{\circ}}+\tan 195^{\circ}=2 a, then the value of \left(a+\frac{1}{a}\right) is :

If   A-B=\frac{\pi}{3}, then \left ( 1+tan\ A \right )\left ( 1-tan\ B \right ) is equal to?

If $\tan A=\frac{1}{\sqrt{x\left(x^2+x+1\right)}}, \tan B=\frac{\sqrt{x}}{\sqrt{x^2+x+1}}$ and $\tan C=\left(x^{-3}+x^{-2}+x^{-1}\right)^{1 / 2}, 0<A, B, C<\frac{\pi}{2}$, then $A+B$ is equal to:

The value of \left ( cot\ \theta -cosec\ \theta \right )^{2} is?

If sin\ \theta +cosec\ \theta =2 , then the value of  sin^{100}\ \theta +cosec^{100}\ \theta is?

What is the value of   \left (cot^{2}\ \theta -cosec^{2}\ \theta \right )?

If  \tan\ \theta \cdot \tan\ 2\theta =1, then the value of \tan\ 4\theta is?

NIELIT University(Govt. of India Institution) B.Tech/ M.Tech

Last Date to Apply : 15th September | Campuses in Agartala, Aizawl, Ajmer, Aurangabad, Calicut, Imphal, Itanagar, Kohima, Gorakhpur, Patna & Srinagar

JSS University Noida Admissions 2024

170+ Recruiters Including Samsung, Zomato, LG, Adobe and many more | Highest CTC 47 LPA

Concepts Covered - 4

Trigonometric Ratio for Compound Angles (Part 1)

Trigonometric Ratio for Compound Angles (Part 1)

The sum or difference of two or more angles is called a compound angle. If A, B and C are any angle then A + B, A - B, A + B + C, A + B - C etc all are compound angles.

1. cos (α - β) = cos α cos β + sin α sin β

2. cos (α+ β) = cos α cos β - sin α sin β

3. sin (α - β) = sin α cos β - cos α sin β 

4. sin (α + β) = sin α cos β + cos α sin β 

 

Proof:

1. cos (α - β) 

Let’s consider two points on the unit circle. Point P is at an angle α from the positive x-axis with coordinates (cos α, sin α) and point Q is at an angle of β from the positive x-axis with coordinates (cos β, sin β). Note the measure of angle POQ is α − β. Label two more points: A at an angle of (α − β) from the positive x-axis with coordinates (cos(α − β), sin(α − β)); and point B with coordinates (1, 0). Triangle POQ is a rotation of triangle AOB and thus the distance from P to Q is the same as the distance from A to B. 

 

We can find the distance from P to Q using the distance formula.

\begin{aligned} d_{P Q} &=\sqrt{(\cos \alpha-\cos \beta)^{2}+(\sin \alpha-\sin \beta)^{2}} \\ &=\sqrt{\cos ^{2} \alpha-2 \cos \alpha \cos \beta+\cos ^{2} \beta+\sin ^{2} \alpha-2 \sin \alpha \sin \beta+\sin ^{2} \beta} \end{aligned}

\begin{array}{l}{=\sqrt{\left(\cos ^{2} \alpha+\sin ^{2} \alpha\right)+\left(\cos ^{2} \beta+\sin ^{2} \beta\right)-2 \cos \alpha \cos \beta-2 \sin \alpha \sin \beta}} \\ {=\sqrt{1+1-2 \cos \alpha \cos \beta-2 \sin \alpha \sin \beta}} \\ {=\sqrt{2-2 \cos \alpha \cos \beta-2 \sin \alpha \sin \beta}}\end{array}

Similarly, using the distance formula we can find the distance from A to B.

\begin{aligned} d_{A B} &=\sqrt{(\cos (\alpha-\beta)-1)^{2}+(\sin (\alpha-\beta)-0)^{2}} \\ &=\sqrt{\cos ^{2}(\alpha-\beta)-2 \cos (\alpha-\beta)+1+\sin ^{2}(\alpha-\beta)} \end{aligned}

\begin{array}{l}{=\sqrt{\left(\cos ^{2}(\alpha-\beta)+\sin ^{2}(\alpha-\beta)\right)-2 \cos (\alpha-\beta)+1}} \\ {=\sqrt{1-2 \cos (\alpha-\beta)+1}} \\ {=\sqrt{2-2 \cos (\alpha-\beta)}}\end{array}

Because the two distances are the same, we set them equal to each other and simplify

\begin{aligned} \sqrt{2-2 \cos \alpha \cos \beta-2 \sin \alpha \sin \beta} &=\sqrt{2-2 \cos (\alpha-\beta)} \\ 2-2 \cos \alpha \cos \beta-2 \sin \alpha \sin \beta &=2-2 \cos (\alpha-\beta) \end{aligned}

Finally we subtract 2 from both sides and divide both sides by −2

\cos \alpha \cos \beta+\sin \alpha \sin \beta=\cos (\alpha-\beta)

 

2. cos (α + β) 

\begin{array}{l}{\;\;\;\;\;\;\;\;=\cos (\alpha-(-\beta))} \\ {\;\;\;\;\;\;\;\;=\cos \alpha \cos (-\beta)+\sin \alpha \sin (-\beta)} \\ {\;\;\;\;\;\;\;\;=\cos \alpha \cos \beta-\sin \alpha \sin \beta} \\ {\text { Hence, } \cos (\alpha+\beta)=\cos \alpha \cos \beta-\sin \alpha\sin \beta}\end{array}

 

3. Sine Compound Angle Formulae

\\ \text {We have }\\\;\;\;\;\;\mathrm{\;\;\;\;\;\;\;\sin (\alpha-\beta) =\cos (90^{\circ}-(\alpha-\beta))}\\\mathrm{\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=\cos ((90^{\circ}-\alpha)+\beta)}\\\mathrm{\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=\cos (90^{\circ}-\alpha) \cos \beta-\sin (90^{\circ}-\alpha) \sin \beta}\\\mathrm{\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=\sin \alpha \cos \beta-\cos \alpha \sin \beta}\\ \\\mathrm {\;\;\;\;\;\;\sin (\alpha+\beta) =\sin (\alpha-(-\beta)) }\\\mathrm{\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=\sin \alpha \cos (-\beta)-\cos \alpha \sin (-\beta)}\\\mathrm{\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=\sin \alpha \cos \beta+\cos \alpha \sin \beta}


 

Trigonometric Ratio for Compound Angles (Part 2)

Trigonometric Ratio for Compound Angles (Part 2)


\\\mathrm{\tan (\alpha+\beta)=\frac{\tan \alpha+\tan \beta}{1-\tan \alpha \tan \beta}}\\\\\mathrm{\tan (\alpha-\beta)=\frac{\tan \alpha-\tan \beta}{1+\tan \alpha \tan \beta}}

\\\mathrm{\cot (\alpha+\beta)=\frac{\cot \alpha\cot \beta-1}{\cot \alpha+ \cot \beta}}\\\\\mathrm{\cot (\alpha-\beta)=\frac{\cot \alpha\cot \beta+1}{\cot \beta- \cot \alpha}}

Proof:

Finding the sum of two angles formula for tangent involves taking quotient of the sum formulas for sine and cosine and simplifying,

\begin{aligned} \tan (\alpha+\beta) &=\frac{\sin (\alpha+\beta)}{\cos (\alpha+\beta)} \\ &=\frac{\sin \alpha \cos \beta+\cos \alpha \sin \beta}{\cos \alpha \cos \beta-\sin \alpha \sin \beta} \end{aligned}

[Divide the numerator and denominator by cosα cos β]

\begin{aligned} &=\frac{\frac{\sin \:\alpha \:\cos \:\beta +\cos \:\alpha \:\sin \:\beta }{\cos \:\alpha \:\cos \:\beta }}{\frac{\cos \:\alpha \:\cos \:\beta -\sin \:\alpha \:\sin \:\beta }{\cos \:\alpha \:\cos \:\beta }} \end{aligned}

\begin{aligned} =& \frac{\frac{\sin \alpha}{\cos \alpha}+\frac{\sin \beta}{\cos \beta}}{1-\frac{\sin \alpha \sin \beta}{\cos \alpha \cos \beta}} \\=& \frac{\tan \alpha+\tan \beta}{1-\tan \alpha \tan \beta} \end{aligned}

For the difference of tangent, put - β in place of β in the above result

 

Cot Formulae

\\\mathrm{\cot{(\alpha+\beta)}=\frac{\cos(\alpha+\beta)}{\sin(\alpha+\beta)}}\\\\\mathrm{\quad\quad\quad\quad\quad=\frac{\cos \alpha \cos \beta-\sin \alpha \sin \beta}{\sin \alpha \cos \beta+\cos \alpha \sin \beta}}\\\\\mathrm{\quad\quad\quad\quad\quad=\frac{\frac{\cos \:\alpha \:\cos \:\beta -\sin \:\alpha \:\sin \:\beta }{\sin\alpha\;sin\beta }}{\frac{\sin \:\alpha \:\cos \:\beta +\cos \:\alpha \:\sin \:\beta }{\sin\alpha\;sin\beta }}}\\\\\text{[Divide the numerator and denominator by}\;\sin\alpha\sin\beta]\\\\\mathrm{\quad\quad\quad\quad\quad=\frac{\frac{\cos \alpha\; \cos \beta}{\sin\alpha\;sin\beta}-\frac{\sin \alpha\; \sin \beta}{\sin\alpha\;sin\beta}}{\frac{\sin \alpha \;\cos \beta}{\sin\alpha\;sin\beta}+\frac{\cos \alpha \;\sin \beta}{\sin\alpha\;sin\beta}}}\\\\\mathrm{\quad\quad\quad\quad\quad=\frac{\cot\alpha\;\cot\beta-1}{\cot\beta+\cot\alpha}}

For the difference of cotangent, put - β in place of β in the above result

Trigonometric Ratio for Compound Angles (Part 3)

Trigonometric Ratio for Compound Angles (Part 3)

Proof Cotangent of the Sum and  Difference of two Angles
\\\mathrm{\cot (\alpha+\beta)=\frac{\cot \alpha\cot \beta-1}{\cot \alpha+ \cot \beta}}\\\\\mathrm{\cot (\alpha-\beta)=\frac{\cot \alpha\cot \beta+1}{\cot \beta- \cot \alpha}}

 

\\\mathrm{\cot{(\alpha+\beta)}=\frac{\cos(\alpha+\beta)}{\sin(\alpha+\beta)}}\\\\\mathrm{\quad\quad\quad\quad\quad=\frac{\cos \alpha \cos \beta-\sin \alpha \sin \beta}{\sin \alpha \cos \beta+\cos \alpha \sin \beta}}\\\\\mathrm{\quad\quad\quad\quad\quad=\frac{\frac{\cos \:\alpha \:\cos \:\beta -\sin \:\alpha \:\sin \:\beta }{\sin\alpha\;sin\beta }}{\frac{\sin \:\alpha \:\cos \:\beta +\cos \:\alpha \:\sin \:\beta }{\sin\alpha\;sin\beta }}}\\\\\text{[Divide the numerator and denominator by}\;\sin\alpha\sin\beta]\\\\\mathrm{\quad\quad\quad\quad\quad=\frac{\frac{\cos \alpha\; \cos \beta}{\sin\alpha\;sin\beta}-\frac{\sin \alpha\; \sin \beta}{\sin\alpha\;sin\beta}}{\frac{\sin \alpha \;\cos \beta}{\sin\alpha\;sin\beta}+\frac{\cos \alpha \;\sin \beta}{\sin\alpha\;sin\beta}}}\\\\\mathrm{\quad\quad\quad\quad\quad=\frac{\cot\alpha\;\cot\beta-1}{\cot\beta+\cot\alpha}}


 

For the difference of cotangent, put - β in place of β in the above derivation.

Trigonometric Ratio for Compound Angles (Some more Result)

Trigonometric Ratio for Compound Angles (Some more Results)


\\1. \sin (A+B) \sin (A-B)=\sin^{2} A - \sin ^{2} B = \cos ^{2} B-\cos ^{2} A \\ 2. \cos (A+B) \cos (A-B)=\cos ^{2} A-\sin ^{2} B=\cos ^{2} B-\sin ^{2} A{\text { 3. } \tan (A+B+C)=\frac{\tan A+\tan B+\tan C-\tan A \tan B \tan C}{1-\tan A \tan B-\tan B \tan C-\tan C \tan A}}

Proof:

1.

\begin{aligned} \sin (A+B) \sin (A-B) &=(\sin A \cos B+\cos A \sin B)(\sin A \cos B-\cos A \sin B) \\ &=\sin ^{2} A \cos ^{2} B-\cos ^{2} A \sin ^{2} B \\ &=\sin ^{2} A\left(1-\sin ^{2} B\right)-\left(1-\sin ^{2} A\right) \sin ^{2} B \\ &=\sin ^{2} A-\sin ^{2} A \sin ^{2} B-\sin ^{2} B+\sin ^{2} A \sin ^{2} B=\sin ^{2} A-\sin ^{2} B \\ &=\left(1-\cos ^{2} A\right)-\left(1-\cos ^{2} B\right)=\cos ^{2} B-\cos ^{2} A \end{aligned}

2.

\begin{aligned} \cos (A+B) \cos (A-B) &=(\cos A \cos B-\sin A \sin B)(\cos A \cos B+\sin A \sin B) \\ &=\cos ^{2} A \cos ^{2} B-\sin ^{2} A \sin ^{2} B \\ &=\cos ^{2} A\left(1-\sin ^{2} B\right)-\left(1-\cos ^{2} A\right) \sin ^{2} B=\cos ^{2} A-\sin ^{2} B \\ &=\left(1-\sin ^{2} A\right)-\left(1-\cos ^{2} B\right)=\cos ^{2} B-\sin ^{2} A \end{aligned}

3.

\begin{array}{l}{\tan (A+B+C)=\tan ((A+B)+C)} {=\frac{\tan (A+B)+\tan C}{1-\tan (A+B) \tan C}}\end{array}

=\frac{\frac{\tan A+\tan B}{1-\tan A \tan B}+\tan C}{1-\left(\frac{\tan A \tan B}{1-\tan A \tan B}\right) \tan C}=\frac{\tan A+\tan B+\tan C-\tan A \tan B \tan C}{1-\tan A \tan B-\tan B \tan C-\tan C \tan A}

Study it with Videos

Trigonometric Ratio for Compound Angles (Part 1)
Trigonometric Ratio for Compound Angles (Part 2)
Trigonometric Ratio for Compound Angles (Part 3)

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Books

Reference Books

Trigonometric Ratio for Compound Angles (Part 2)

Mathematics for Joint Entrance Examination JEE (Advanced) : Trigonometry

Page No. : 3.6

Line : 1

Trigonometric Ratio for Compound Angles (Part 3)

Mathematics for Joint Entrance Examination JEE (Advanced) : Trigonometry

Page No. : 3.6

Line : 12

E-books & Sample Papers

Get Answer to all your questions

Back to top