Engineering Entrance Exams Application Date 2025 & Details

Trigonometric Ratios of Complementary Angles - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • Complementary Angles is considered one the most difficult concept.

  • 13 Questions around this concept.

Solve by difficulty

If \cos ^{-1}x-\cos ^{-1}\frac{y}{2}=\alpha , then 4x^{2}-4xy\cos \alpha +y^{2} is equal to:

Let  \tan ^{-1}y=\tan ^{-1}x\, +\, \tan ^{-1}\left ( \frac{2x}{1-x^{2}} \right ),    where \left | x \right |< \frac{1}{\sqrt{3}}.  

Then the value of y  is :

Concepts Covered - 1

Complementary Angles

Complementary Angles

\\1.\;\;\sin ^{-1} x+\cos ^{-1} x=\frac{\pi}{2}, \text { for all } x \in[-1,1] \\\\2.\;\; \tan ^{-1} x+\cot ^{-1} x=\frac{\pi}{2}, \text { for all } x \in R \\\\3.\;\; \sec ^{-1} x+\cos \operatorname{ec}^{-1} x=\frac{\pi}{2} \text { for all } x \in(-\infty,-1] \cup[1, \infty)

 

Proof:

1.

\\\text { Let } \sin ^{-1} x=\theta\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;(i) \\ \text { where } \theta \in[-\pi / 2 , \pi / 2]\\\\ \Rightarrow \quad\quad\quad-\frac{\pi}{2} \leq-\theta \leq \frac{\pi}{2} \\\\ \Rightarrow \quad\quad\quad 0 \leq \frac{\pi}{2}-\theta \leq\pi \\\\\Rightarrow \quad\quad\quad \frac{\pi}{2}-\theta \in[0,\pi] \\\\ \text { Now, } \sin ^{-1} x=\theta\\\text { Or, } \;\;\;\;\;\;\;\;x=\sin\theta\\\\ \Rightarrow \quad\quad\quad x=\cos \left(\frac{\pi}{2}-\theta\right)\\\\\mathrm{\Rightarrow \quad\quad\quad \cos ^{-1} x=\frac{\pi}{2}-\theta\;\;\;\;\;\;\;\;\;[\because x \in[-1,1] \text { and }(\pi / 2-\theta) \in[0, \pi]]}\\\\\mathrm{\Rightarrow \quad\quad\quad \theta+\cos ^{-1} x=\frac{\pi}{2}}\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;(ii)\\\\\text { From Eqs.(i) and (ii), we get } \sin ^{-1} x+\cos ^{-1} x=\pi / 2 . \text { Similarly, we get the other results. }

Study it with Videos

Complementary Angles

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Books

Reference Books

Complementary Angles

Mathematics for Joint Entrance Examination JEE (Advanced) : Trigonometry

Page No. : 7.16

Line : 19

E-books & Sample Papers

Get Answer to all your questions

Back to top