JEE Mains 2025 April 2 Shift 1 Question Paper with Solutions Available - Download PDF

Trigonometric Ratios of Complementary Angles - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • Complementary Angles is considered one the most difficult concept.

  • 24 Questions around this concept.

Solve by difficulty

If \cos ^{-1}x-\cos ^{-1}\frac{y}{2}=\alpha , then 4x^{2}-4xy\cos \alpha +y^{2} is equal to:

Let  \tan ^{-1}y=\tan ^{-1}x\, +\, \tan ^{-1}\left ( \frac{2x}{1-x^{2}} \right ),    where \left | x \right |< \frac{1}{\sqrt{3}}.  

Then the value of y  is :

If $\operatorname{Sin}^{-1} x=\frac{\pi}{5}$ for some $x \epsilon(-1,1)$ then value of $\cos ^{-1} x$ is

JEE Main Session 2 Memory Based Questions: April 2- Shift 1 | Shift-2

JEE Main 2025: Mock Tests | PYQsRank PredictorCollege Predictor | Admit Card Link

New: Meet Careers360 experts in your city | Official Question Papee-Session 1

Apply to TOP B.Tech /BE Entrance exams: VITEEE | MET | AEEE | BITSAT

The value of $Cot^{-1}\frac{3}{4}+Sin^{-1}\frac{5}{13}$ is

Number of solutions of  $3\cos^{-1}x= \frac{\pi}{2}-\sin^{-1}x$  is

If $\cos\left ( sin^{-1}\frac{2}{5} + cos^{-1}x \right )=0,$ then x is equal to

 

Concepts Covered - 1

Complementary Angles

Complementary Angles
1. $\sin ^{-1} x+\cos ^{-1} x=\frac{\pi}{2}$, for all $x \in[-1,1]$
2. $\tan ^{-1} x+\cot ^{-1} x=\frac{\pi}{2}$, for all $x \in R$
3. $\sec ^{-1} x+\operatorname{cosec}^{-1} x=\frac{\pi}{2}$ for all $x \in(-\infty,-1] \cup[1, \infty)$

Proof:
1.

Let $\sin ^{-1} x=\theta$
where $\theta \in[-\pi / 2, \pi / 2]$

$
\begin{array}{ll}
\Rightarrow & -\frac{\pi}{2} \leq-\theta \leq \frac{\pi}{2} \\
\Rightarrow & 0 \leq \frac{\pi}{2}-\theta \leq \pi \\
\Rightarrow & \frac{\pi}{2}-\theta \in[0, \pi]
\end{array}
$
Now, $\sin ^{-1} x=\theta$
Or, $\quad x=\sin \theta$
$\Rightarrow \quad x=\cos \left(\frac{\pi}{2}-\theta\right)$
$\Rightarrow \quad \cos ^{-1} \mathrm{x}=\frac{\pi}{2}-\theta \quad[\because \mathrm{x} \in[-1,1]$ and $(\pi / 2-\theta) \in[0, \pi]]$
$\Rightarrow \quad \theta+\cos ^{-1} \mathrm{x}=\frac{\pi}{2}$
From Eqs.(i) and (ii), we get $\sin ^{-1} x+\cos ^{-1} x=\pi / 2$. Similarly, we get the other results.

Study it with Videos

Complementary Angles

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Books

Reference Books

Complementary Angles

Mathematics for Joint Entrance Examination JEE (Advanced) : Trigonometry

Page No. : 7.16

Line : 19

E-books & Sample Papers

Get Answer to all your questions

Back to top