Amity University Noida B.Tech Admissions 2025
ApplyAmong Top 30 National Universities for Engineering (NIRF 2024)
Complementary Angles is considered one the most difficult concept.
15 Questions around this concept.
If then is equal to:
Let where
Then the value of is :
If $\operatorname{Sin}^{-1} x=\frac{\pi}{5}$ for some $x \epsilon(-1,1)$ then value of $\cos ^{-1} x$ is
New: JEE Main 2025 Admit Card OUT; Download Now
JEE Main 2025: Sample Papers | Syllabus | Mock Tests | PYQs | Video Lectures
JEE Main 2025: Preparation Guide | High Scoring Topics | Free Crash Course
The value of $Cot^{-1}\frac{3}{4}+Sin^{-1}\frac{5}{13}$ is
Complementary Angles
1. $\sin ^{-1} x+\cos ^{-1} x=\frac{\pi}{2}$, for all $x \in[-1,1]$
2. $\tan ^{-1} x+\cot ^{-1} x=\frac{\pi}{2}$, for all $x \in R$
3. $\sec ^{-1} x+\operatorname{cosec}^{-1} x=\frac{\pi}{2}$ for all $x \in(-\infty,-1] \cup[1, \infty)$
Proof:
1.
Let $\sin ^{-1} x=\theta$
where $\theta \in[-\pi / 2, \pi / 2]$
$
\begin{array}{ll}
\Rightarrow & -\frac{\pi}{2} \leq-\theta \leq \frac{\pi}{2} \\
\Rightarrow & 0 \leq \frac{\pi}{2}-\theta \leq \pi \\
\Rightarrow & \frac{\pi}{2}-\theta \in[0, \pi]
\end{array}
$
Now, $\sin ^{-1} x=\theta$
Or, $\quad x=\sin \theta$
$\Rightarrow \quad x=\cos \left(\frac{\pi}{2}-\theta\right)$
$\Rightarrow \quad \cos ^{-1} \mathrm{x}=\frac{\pi}{2}-\theta \quad[\because \mathrm{x} \in[-1,1]$ and $(\pi / 2-\theta) \in[0, \pi]]$
$\Rightarrow \quad \theta+\cos ^{-1} \mathrm{x}=\frac{\pi}{2}$
From Eqs.(i) and (ii), we get $\sin ^{-1} x+\cos ^{-1} x=\pi / 2$. Similarly, we get the other results.
"Stay in the loop. Receive exam news, study resources, and expert advice!"