JEE Main Eligibility Marks in 12th Subject Wise 2025 – Check Minimum Marks Criteria

Trigonometric Ratio of Submultiple of an Angle - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • 19 Questions around this concept.

Solve by difficulty

$\sin A=\frac{3}{5}\left(0^{\circ}<A<90^{\circ}\right)$, then $\tan \frac{A}{2}=$

If $\sin \alpha-\frac{-3}{5}$ where $\pi<\alpha<\frac{3 \pi}{2}$, then $\cos \frac{\alpha}{2}$ equal to:

One of the root of eq $x^3 -3 x ^2 - 3x + 1 = 0 \: \: is$

The value of $\sin 22.5^{\circ}$ is:

If sin x+sin y=7/5 and cos x+cos y=1/5, then sin(x+y) equals 

Concepts Covered - 1

Trigonometric Ratio of Submultiple of an Angle

Trigonometric Ratio of Submultiple of an Angle
1. Trigonometric Ratio of $\theta$ in terms of $\theta / 2$

$
\begin{aligned}
\sin (\theta) & =2 \sin \frac{\theta}{2} \cos \frac{\theta}{2} \\
& =\frac{2 \tan \frac{\theta}{2}}{1+\tan ^2 \frac{\theta}{2}} \\
\cos (\theta) & =\cos ^2 \frac{\theta}{2}-\sin ^2 \frac{\theta}{2} \\
& =1-2 \sin ^2 \frac{\theta}{2} \\
& =2 \cos ^2 \frac{\theta}{2}-1 \\
& =\frac{1-\tan ^2 \frac{\theta}{2}}{1+\tan ^2 \frac{\theta}{2}} \\
\tan (\theta) & =\frac{2 \tan ^{\frac{\theta}{2}}}{1-\tan ^2 \frac{\theta}{2}}
\end{aligned}
$
All the above trigonometric ratios can be derived by replacing ' $\theta$ ' with ' $\theta / 2$ ' in the double angle formulas.

2. Trigonometric Ratio of $\theta$ in terms of $\theta / 3$
1. $\sin \mathrm{A}=3 \sin \frac{\mathrm{~A}}{3}-4 \sin ^3 \frac{\mathrm{~A}}{3}$
2. $\cos \mathrm{A}=4 \cos ^3 \frac{\mathrm{~A}}{3}-3 \cos \frac{A}{3}$
3. $\tan \mathrm{A}=\frac{3 \tan \frac{\mathrm{~A}}{3}-\tan ^3 \frac{\mathrm{~A}}{3}}{1-3 \tan ^2 \frac{\mathrm{~A}}{3}}$

The above trigonometric ratio of angle ' $A$ ' in terms of ' $A / 3$ ' can be derived by replacing ' $A$ ' with ' $A / 3$ ' in the triple angle formulas

Study it with Videos

Trigonometric Ratio of Submultiple of an Angle

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Books

Reference Books

Trigonometric Ratio of Submultiple of an Angle

Mathematics for Joint Entrance Examination JEE (Advanced) : Trigonometry

Page No. : 3.11

Line : 43

E-books & Sample Papers

Get Answer to all your questions

Back to top