Amity University, Mumbai B.Tech Admissions 2025
ApplyRanked amongst top 3% universities globally (QS Rankings)
19 Questions around this concept.
$\sin A=\frac{3}{5}\left(0^{\circ}<A<90^{\circ}\right)$, then $\tan \frac{A}{2}=$
If $\sin \alpha-\frac{-3}{5}$ where $\pi<\alpha<\frac{3 \pi}{2}$, then $\cos \frac{\alpha}{2}$ equal to:
One of the root of eq $x^3 -3 x ^2 - 3x + 1 = 0 \: \: is$
The value of $\sin 22.5^{\circ}$ is:
If sin x+sin y=7/5 and cos x+cos y=1/5, then sin(x+y) equals
Trigonometric Ratio of Submultiple of an Angle
1. Trigonometric Ratio of $\theta$ in terms of $\theta / 2$
$
\begin{aligned}
\sin (\theta) & =2 \sin \frac{\theta}{2} \cos \frac{\theta}{2} \\
& =\frac{2 \tan \frac{\theta}{2}}{1+\tan ^2 \frac{\theta}{2}} \\
\cos (\theta) & =\cos ^2 \frac{\theta}{2}-\sin ^2 \frac{\theta}{2} \\
& =1-2 \sin ^2 \frac{\theta}{2} \\
& =2 \cos ^2 \frac{\theta}{2}-1 \\
& =\frac{1-\tan ^2 \frac{\theta}{2}}{1+\tan ^2 \frac{\theta}{2}} \\
\tan (\theta) & =\frac{2 \tan ^{\frac{\theta}{2}}}{1-\tan ^2 \frac{\theta}{2}}
\end{aligned}
$
All the above trigonometric ratios can be derived by replacing ' $\theta$ ' with ' $\theta / 2$ ' in the double angle formulas.
2. Trigonometric Ratio of $\theta$ in terms of $\theta / 3$
1. $\sin \mathrm{A}=3 \sin \frac{\mathrm{~A}}{3}-4 \sin ^3 \frac{\mathrm{~A}}{3}$
2. $\cos \mathrm{A}=4 \cos ^3 \frac{\mathrm{~A}}{3}-3 \cos \frac{A}{3}$
3. $\tan \mathrm{A}=\frac{3 \tan \frac{\mathrm{~A}}{3}-\tan ^3 \frac{\mathrm{~A}}{3}}{1-3 \tan ^2 \frac{\mathrm{~A}}{3}}$
The above trigonometric ratio of angle ' $A$ ' in terms of ' $A / 3$ ' can be derived by replacing ' $A$ ' with ' $A / 3$ ' in the triple angle formulas
"Stay in the loop. Receive exam news, study resources, and expert advice!"