JEE Main Eligibility Marks in 12th Subject Wise 2025 – Check Minimum Marks Criteria

Sum and difference of angles in terms of arctan - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • 47 Questions around this concept.

Solve by difficulty

The value of \small \tan ^{-1}\left [ \frac{\sqrt{1+x^{2}}+\sqrt{1 -x^{2}}}{\sqrt{1 +x^{2}}-\sqrt{1 -x^{2}}} \right ],

\small \left | x \right |< \frac{1}{2},x\neq 0 is equal to:

If $x, y, z$ are in A.P. and $\tan ^{-1} x, \tan ^{-1} y$ and $\tan ^{-1} z$ are also in A.P. , then:

$\cos ^{-1}\left(\frac{3}{5}\right)+\cos ^{-1}\left(\frac{4}{5}\right)=$

$\cos ^{-1}(x)+\cos ^{-1}(-x)=$

Concepts Covered - 4

Sum of angles in terms of arctan

The sum of angles in terms of arctan
1. $\tan ^{-1} \mathrm{x}+\tan ^{-1} \mathrm{y}=\left\{\begin{array}{cc}\tan ^{-1}\left(\frac{x+y}{1-x y}\right), & \text { If } \mathrm{x}>0, y>0, x y<1 \\ \pi+\tan ^{-1}\left(\frac{x+y}{1-x y}\right), & \text { If } \mathrm{x}>0, \mathrm{y}>0 \text { and } \mathrm{xy}>1 \\ -\pi+\tan ^{-1}\left(\frac{x+y}{1-x y}\right), & \text { If } \mathrm{x}<0, \mathrm{y}<0 \text { and } \mathrm{xy}>1\end{array}\right.$

Sum and difference of angles in terms of arctan (Part 2)

Sum of angles in terms of arctan
1. $\tan ^{-1} \mathrm{x}-\tan ^{-1} \mathrm{y}=\left\{\begin{array}{cc}\tan ^{-1}\left(\frac{x-y}{1+x y}\right), & \text { If } x y>-1 \\ \pi+\tan ^{-1}\left(\frac{x-y}{1+x y}\right), & \text { If } \mathrm{x}>0, \mathrm{y}<0 \text { and } \mathrm{xy}<-1 \\ -\pi+\tan ^{-1}\left(\frac{x-y}{1+x y}\right), & \text { If } \mathrm{x}<0, \mathrm{y}>0 \text { and } \mathrm{xy}<-1\end{array}\right.$

Sum and difference of angles in terms of arcsin

Sum and difference of angles in terms of arcsin
1. $\sin ^{-1} \mathrm{x}+\sin ^{-1} \mathrm{y}= \begin{cases} & \text { if }-1 \leq x, y \leq 1 \text { and } x^2+y^2 \leq 1 \\ \sin ^{-1}\left\{x \sqrt{1-y^2}+y \sqrt{1-x^2}\right\} & \text { or, if } x y<0 \text { and } x^2+y^2>1 \\ \pi-\sin ^{-1}\left\{x \sqrt{1-y^2}+y \sqrt{1-x^2}\right\} & \text { if } 0<x, y \leq 1 \text { and } x^2+y^2>1 \\ -\pi-\sin ^{-1}\left\{x \sqrt{1-y^2}+y \sqrt{1-x^2}\right\} & \text { if }-1 \leq x, y<0 \text { and } x^2+y^2>1\end{cases}$
2. $\sin ^{-1} \mathrm{x}-\sin ^{-1} \mathrm{y}= \begin{cases} & \text { if }-1 \leq x, y \leq 1 \text { and } x^2+y^2 \leq 1 \\ \sin ^{-1}\left\{x \sqrt{1-y^2}-y \sqrt{1-x^2}\right\} & \text { or, if } x y>0 \text { and } x^2+y^2>1 \\ \pi-\sin ^{-1}\left\{x \sqrt{1-y^2}+y \sqrt{1-x^2}\right\} & \text { if } 0<x \leq 1 ;-1 \leq y<0 \text { and } x^2+y^2>1 \\ -\pi-\sin ^{-1}\left\{x \sqrt{1-y^2}+y \sqrt{1-x^2}\right\} & \text { if }-1 \leq x<0 ; 0<y \leq 1 \text { and } x^2+y^2>1\end{cases}$

Sum and difference of angles in terms of arccos

Sum and difference of angles in terms of arccos
1. $\cos ^{-1} x+\cos ^{-1} y=\cos ^{-1}\left\{x y-\sqrt{1-x^2} \sqrt{1-y^2}\right\} \quad$ if $0<x, y \leq 1$
2. $\cos ^{-1} x-\cos ^{-1} y= \begin{cases}\cos ^{-1}\left\{x y+\sqrt{1-x^2} \sqrt{1-y^2}\right\} & \text { if } 0 \leq x, y \leq 1 \text { and } x \leq y \\ -\cos ^{-1}\left\{x y+\sqrt{1-x^2} \sqrt{1-y^2}\right\} & \text { if } 0<x, y \leq 1 \text { and } x>y\end{cases}$

Study it with Videos

Sum of angles in terms of arctan
Sum and difference of angles in terms of arctan (Part 2)
Sum and difference of angles in terms of arcsin

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Books

Reference Books

Sum of angles in terms of arctan

Mathematics for Joint Entrance Examination JEE (Advanced) : Trigonometry

Page No. : 7.19

Line : 15

Sum and difference of angles in terms of arctan (Part 2)

Mathematics for Joint Entrance Examination JEE (Advanced) : Trigonometry

Page No. : 7.20

Line : 12

E-books & Sample Papers

Get Answer to all your questions

Back to top