Amity University-Noida B.Tech Admissions 2026
Among top 100 Universities Globally in the Times Higher Education (THE) Interdisciplinary Science Rankings 2026
Some Standard Expansions (Part 2) is considered one of the most asked concept.
87 Questions around this concept.
Remainder when $7^{100}$ is divided by 25 is
If $(\sqrt{2}+1)^6=I+F_{\text {where }} \leq F<1$ and $I \in N{\text { then the value of } \mathrm{I}}$ is
If $(1+x)^n-C_0+C_1 x+C_2 x^2+C_3 x^3+\cdots+C_n x^n$, then $\mathrm{C}_0 \mathrm{C}_1+\mathrm{C}_1 \mathrm{C}_2+\cdots+\mathrm{C}_{\mathrm{n}-1} \mathrm{C}_{\mathrm{n}}$ is equal to
New: JEE Main 2026 Answer Key Out; Download Now
JEE Main 2026 Tools: Rank Predictor | College Predictor
Latest: JEE Main 2026 Session 2 Registration Starts; Apply Now
If $(1+x)^n=C_0+C_1 x+C_2 x^2+\ldots \ldots .+C_n x^n$, then the value of $2 \mathrm{C}_0+4 \mathrm{C}_1+6 \mathrm{C}_2+\ldots \ldots \ldots+2(\mathrm{n}+1) \mathrm{C}_{\mathrm{n}}$ will be
If $(1+x)^n=C_0+C_1 x+C_2 x^2+\ldots+C_n x^n$, then the value of $\sum_{\mathrm{k}=0}^{\mathrm{n}}(\mathrm{k}+1)^2 \cdot C_k$
If $\{x\}$ denotes the fractional part of $x$, then $\left\{\frac{3^{2 n}}{8}\right\}, n \in N$ is
If $\left(1+2 x+3 x^2\right)^{10}=a_0+a_1 x+a_2 x^2+\ldots+a_{20} x^{20}$, then $a_1$ equals
If $\left(1+x-2 x^2\right)^5=1+a_1 x+a_2 x^2+\ldots+a_{10} x^{10}$, then $a_2+a_4+a_6+\ldots+a_{10}$
If $\mathrm{a}_{\mathrm{k}}$ is the coefficient of $\mathrm{x}^{\mathrm{k}}$ in the expansion of $\left(1+\mathrm{x}+\mathrm{x}^2\right)^{\mathrm{n}}$ for $\mathrm{k}=0,1,2, \ldots \ldots, 2 \mathrm{n}$ then $5 \cdot \mathrm{a}_1+10 \cdot \mathrm{a}_2+15 \cdot \mathrm{a}_3+\ldots \ldots+10 \cdot \mathrm{na}_{2 \mathrm{n}}$
The number $101^{100}-1$ is divisible by
We know the binomial expansion,
$
(\mathrm{x}+\mathrm{y})^{\mathrm{n}}={ }^{\mathrm{n}} \mathrm{C}_0 \mathrm{x}^{\mathrm{n}}+{ }^{\mathrm{n}} \mathrm{C}_1 \mathrm{x}^{\mathrm{n}-1} \mathrm{y}+{ }^{\mathrm{n}} \mathrm{C}_2 \mathrm{x}^{\mathrm{n}-2} \mathrm{y}^2+\cdots+{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{n}} \mathrm{y}^{\mathrm{n}}
$
i.e. $\quad(x+y)^n=\sum_{r=0}^n{ }^n C_r x^{n-r} y^r$
1. Replace ' $y$ ' with ' $-y$ ' in the binomial expansion, we get
$
\begin{aligned}
& (x-y)^n={ }^n C_0 x^n-{ }^n C_1 x^{n-1} y+{ }^n C_2 x^{\mathrm{n}-2} y^2-\cdots+(-1)^{\mathrm{r} n} C_r x^{\mathrm{n}-\mathrm{r}} y^{\mathrm{r}}+\cdots+(-1)^{\mathrm{n}{ }^n} C_n y^{\mathrm{n}} \\
& \text { or } \quad(\mathrm{x}-\mathrm{y})^{\mathrm{n}}=\sum_{\mathrm{r}=0}^{\mathrm{n}}(-1)^{\mathrm{r} n} \mathrm{C}_{\mathrm{r}} \mathrm{x}^{\mathrm{n}-\mathrm{r}} y^{\mathrm{r}}
\end{aligned}
$
2. In the binomial expansion, $(x+y)^n$ replace ' $x$ ' by 1 and ' $y$ ' by $x$
$
\begin{aligned}
& (1+\mathrm{x})^{\mathrm{n}}={ }^{\mathrm{n}} \mathrm{C}_0 \mathrm{x}^0+{ }^{\mathrm{n}} \mathrm{C}_1 \mathrm{x}^1+{ }^{\mathrm{n}} \mathrm{C}_2 \mathrm{x}^2+\cdots+{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}} \mathrm{x}^{\mathrm{r}}+\cdots+{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{n}} \mathrm{x}^{\mathrm{n}} \\
& \text { or } \quad(1+\mathrm{x})^{\mathrm{n}}=\sum_{\mathrm{r}=0}^{\mathrm{n}}{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}} \mathrm{x}^{\mathrm{r}}
\end{aligned}
$
3. In the binomial expansion, $(x+y)^n$ replace ' $x$ ' by ' 1 ' and ' $y$ ' by ' $-x$ '
$
\begin{aligned}
& (1-\mathrm{x})^{\mathrm{n}}={ }^{\mathrm{n}} \mathrm{C}_0 \mathrm{x}^0-{ }^{\mathrm{n}} \mathrm{C}_1 \mathrm{x}^1+{ }^{\mathrm{n}} \mathrm{C}_2 \mathrm{x}^2-\cdots+(-1)^{\mathrm{r}}{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}} \mathrm{x}^{\mathrm{r}}+\cdots+(-1)^{\mathrm{n}}{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{n}} \mathrm{x}^{\mathrm{n}} \\
& \text { or } \quad(1-x)^n=\sum_{r=0}^n(-1)^r{ }^n C_r x^r
\end{aligned}
$
4. Addition: $(x+y)^n+(x-y)^n$
$
(x+y)^n+(x-y)^n=2\left[{ }^n C_0 x^n y^0+{ }^n C_2 x^{n-2} y^2+{ }^n C_4 x^{n-4} y^4+\ldots .\right]
$
If ' $n$ ' is odd then number of terms is $\frac{n+1}{2}$
If $n^{\prime}$ is even then number of terms is $\frac{n^2}{2}+1$
5. Subtraction: $(x+y)^n-(x-y)^n$
$
(x+y)^n-(x-y)^n=2\left[{ }^n C_1 x^{n-1} y^1+{ }^n C_3 x^{n-3} y^3+{ }^n C_5 x^{n-5} y^5+\ldots \ldots\right]
$
If $n$ is odd, then the number of terms is $\frac{n+1}{2}$
If $n$ is even, then the number of terms is $\frac{n}{2}$
"Stay in the loop. Receive exam news, study resources, and expert advice!"
