Software Engineering Courses After 12th - Fees Eligibility & Top Colleges

Some Standard Expansions - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • Some Standard Expansions (Part 2) is considered one of the most asked concept.

  • 87 Questions around this concept.

Solve by difficulty

Remainder when $7^{100}$ is divided by 25 is

If $(\sqrt{2}+1)^6=I+F_{\text {where }} \leq F<1$ and $I \in N{\text { then the value of } \mathrm{I}}$ is

If $(1+x)^n-C_0+C_1 x+C_2 x^2+C_3 x^3+\cdots+C_n x^n$, then $\mathrm{C}_0 \mathrm{C}_1+\mathrm{C}_1 \mathrm{C}_2+\cdots+\mathrm{C}_{\mathrm{n}-1} \mathrm{C}_{\mathrm{n}}$ is equal to

If $(1+x)^n=C_0+C_1 x+C_2 x^2+\ldots \ldots .+C_n x^n$, then the value of $2 \mathrm{C}_0+4 \mathrm{C}_1+6 \mathrm{C}_2+\ldots \ldots \ldots+2(\mathrm{n}+1) \mathrm{C}_{\mathrm{n}}$ will be

If $(1+x)^n=C_0+C_1 x+C_2 x^2+\ldots+C_n x^n$, then the value of $\sum_{\mathrm{k}=0}^{\mathrm{n}}(\mathrm{k}+1)^2 \cdot C_k$

If $\{x\}$ denotes the fractional part of $x$, then $\left\{\frac{3^{2 n}}{8}\right\}, n \in N$ is

If $\left(1+2 x+3 x^2\right)^{10}=a_0+a_1 x+a_2 x^2+\ldots+a_{20} x^{20}$, then $a_1$ equals

UPES B.Tech Admissions 2025

Ranked #42 among Engineering colleges in India by NIRF | Highest Package 1.3 CR , 100% Placements | Last Date to Apply: 28th April

ICFAI University Hyderabad B.Tech Admissions 2025

Merit Scholarships | NAAC A+ Accredited | Top Recruiters : E&Y, CYENT, Nvidia, CISCO, Genpact, Amazon & many more

If $\left(1+x-2 x^2\right)^5=1+a_1 x+a_2 x^2+\ldots+a_{10} x^{10}$, then $a_2+a_4+a_6+\ldots+a_{10}$

If $\mathrm{a}_{\mathrm{k}}$ is the coefficient of $\mathrm{x}^{\mathrm{k}}$ in the expansion of $\left(1+\mathrm{x}+\mathrm{x}^2\right)^{\mathrm{n}}$ for $\mathrm{k}=0,1,2, \ldots \ldots, 2 \mathrm{n}$ then $5 \cdot \mathrm{a}_1+10 \cdot \mathrm{a}_2+15 \cdot \mathrm{a}_3+\ldots \ldots+10 \cdot \mathrm{na}_{2 \mathrm{n}}$

JEE Main 2025 College Predictor
Know your college admission chances in NITs, IIITs and CFTIs, many States/ Institutes based on your JEE Main rank by using JEE Main 2025 College Predictor.
Use Now

The number  $101^{100}-1$  is divisible by

Concepts Covered - 2

Some Standard Expansions (Part 1)

We know the binomial expansion,

$
(\mathrm{x}+\mathrm{y})^{\mathrm{n}}={ }^{\mathrm{n}} \mathrm{C}_0 \mathrm{x}^{\mathrm{n}}+{ }^{\mathrm{n}} \mathrm{C}_1 \mathrm{x}^{\mathrm{n}-1} \mathrm{y}+{ }^{\mathrm{n}} \mathrm{C}_2 \mathrm{x}^{\mathrm{n}-2} \mathrm{y}^2+\cdots+{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{n}} \mathrm{y}^{\mathrm{n}}
$

i.e. $\quad(x+y)^n=\sum_{r=0}^n{ }^n C_r x^{n-r} y^r$
1. Replace ' $y$ ' with ' $-y$ ' in the binomial expansion, we get

$
\begin{aligned}
& (x-y)^n={ }^n C_0 x^n-{ }^n C_1 x^{n-1} y+{ }^n C_2 x^{\mathrm{n}-2} y^2-\cdots+(-1)^{\mathrm{r} n} C_r x^{\mathrm{n}-\mathrm{r}} y^{\mathrm{r}}+\cdots+(-1)^{\mathrm{n}{ }^n} C_n y^{\mathrm{n}} \\
& \text { or } \quad(\mathrm{x}-\mathrm{y})^{\mathrm{n}}=\sum_{\mathrm{r}=0}^{\mathrm{n}}(-1)^{\mathrm{r} n} \mathrm{C}_{\mathrm{r}} \mathrm{x}^{\mathrm{n}-\mathrm{r}} y^{\mathrm{r}}
\end{aligned}
$

2. In the binomial expansion, $(x+y)^n$ replace ' $x$ ' by 1 and ' $y$ ' by $x$

$
\begin{aligned}
& (1+\mathrm{x})^{\mathrm{n}}={ }^{\mathrm{n}} \mathrm{C}_0 \mathrm{x}^0+{ }^{\mathrm{n}} \mathrm{C}_1 \mathrm{x}^1+{ }^{\mathrm{n}} \mathrm{C}_2 \mathrm{x}^2+\cdots+{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}} \mathrm{x}^{\mathrm{r}}+\cdots+{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{n}} \mathrm{x}^{\mathrm{n}} \\
& \text { or } \quad(1+\mathrm{x})^{\mathrm{n}}=\sum_{\mathrm{r}=0}^{\mathrm{n}}{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}} \mathrm{x}^{\mathrm{r}}
\end{aligned}
$

3. In the binomial expansion, $(x+y)^n$ replace ' $x$ ' by ' 1 ' and ' $y$ ' by ' $-x$ '

$
\begin{aligned}
& (1-\mathrm{x})^{\mathrm{n}}={ }^{\mathrm{n}} \mathrm{C}_0 \mathrm{x}^0-{ }^{\mathrm{n}} \mathrm{C}_1 \mathrm{x}^1+{ }^{\mathrm{n}} \mathrm{C}_2 \mathrm{x}^2-\cdots+(-1)^{\mathrm{r}}{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}} \mathrm{x}^{\mathrm{r}}+\cdots+(-1)^{\mathrm{n}}{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{n}} \mathrm{x}^{\mathrm{n}} \\
& \text { or } \quad(1-x)^n=\sum_{r=0}^n(-1)^r{ }^n C_r x^r
\end{aligned}
$

Some Standard Expansions (Part 2)

4. Addition: $(x+y)^n+(x-y)^n$

$
(x+y)^n+(x-y)^n=2\left[{ }^n C_0 x^n y^0+{ }^n C_2 x^{n-2} y^2+{ }^n C_4 x^{n-4} y^4+\ldots .\right]
$
If ' $n$ ' is odd then number of terms is $\frac{n+1}{2}$
If $n^{\prime}$ is even then number of terms is $\frac{n^2}{2}+1$
5. Subtraction: $(x+y)^n-(x-y)^n$

$
(x+y)^n-(x-y)^n=2\left[{ }^n C_1 x^{n-1} y^1+{ }^n C_3 x^{n-3} y^3+{ }^n C_5 x^{n-5} y^5+\ldots \ldots\right]
$
If $n$ is odd, then the number of terms is $\frac{n+1}{2}$
If $n$ is even, then the number of terms is $\frac{n}{2}$

Study it with Videos

Some Standard Expansions (Part 1)
Some Standard Expansions (Part 2)

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Get Answer to all your questions

Back to top