JEE Main Marks vs Percentile vs Rank 2025 - Calculate Percentile & Rank using Marks

Some Standard Expansions - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • Some Standard Expansions (Part 2) is considered one of the most asked concept.

  • 75 Questions around this concept.

Solve by difficulty

Remainder when $7^{100}$ is divided by 25 is

If $(\sqrt{2}+1)^6=I+F_{\text {where }} \leq F<1$ and $I \in N{\text { then the value of } \mathrm{I}}$ is

If $(1+x)^n-C_0+C_1 x+C_2 x^2+C_3 x^3+\cdots+C_n x^n$, then $\mathrm{C}_0 \mathrm{C}_1+\mathrm{C}_1 \mathrm{C}_2+\cdots+\mathrm{C}_{\mathrm{n}-1} \mathrm{C}_{\mathrm{n}}$ is equal to

If $(1+x)^n=C_0+C_1 x+C_2 x^2+\ldots \ldots .+C_n x^n$, then the value of $2 \mathrm{C}_0+4 \mathrm{C}_1+6 \mathrm{C}_2+\ldots \ldots \ldots+2(\mathrm{n}+1) \mathrm{C}_{\mathrm{n}}$ will be

If $(1+x)^n=C_0+C_1 x+C_2 x^2+\ldots+C_n x^n$, then the value of $\sum_{\mathrm{k}=0}^{\mathrm{n}}(\mathrm{k}+1)^2 \cdot C_k$

If $\{x\}$ denotes the fractional part of $x$, then $\left\{\frac{3^{2 n}}{8}\right\}, n \in N$ is

If $\left(1+2 x+3 x^2\right)^{10}=a_0+a_1 x+a_2 x^2+\ldots+a_{20} x^{20}$, then $a_1$ equals

Amrita Vishwa Vidyapeetham | B.Tech Admissions 2025

Recognized as Institute of Eminence by Govt. of India | NAAC ‘A++’ Grade | Upto 75% Scholarships

UPES B.Tech Admissions 2025

Ranked #42 among Engineering colleges in India by NIRF | Highest CTC 50 LPA , 100% Placements | Last Date to Apply: 25th Feb

If $\left(1+x-2 x^2\right)^5=1+a_1 x+a_2 x^2+\ldots+a_{10} x^{10}$, then $a_2+a_4+a_6+\ldots+a_{10}$

If $\mathrm{a}_{\mathrm{k}}$ is the coefficient of $\mathrm{x}^{\mathrm{k}}$ in the expansion of $\left(1+\mathrm{x}+\mathrm{x}^2\right)^{\mathrm{n}}$ for $\mathrm{k}=0,1,2, \ldots \ldots, 2 \mathrm{n}$ then $5 \cdot \mathrm{a}_1+10 \cdot \mathrm{a}_2+15 \cdot \mathrm{a}_3+\ldots \ldots+10 \cdot \mathrm{na}_{2 \mathrm{n}}$

JEE Main 2025 College Predictor
Know your college admission chances in NITs, IIITs and CFTIs, many States/ Institutes based on your JEE Main result by using JEE Main 2025 College Predictor.
Try Now

The number  $101^{100}-1$  is divisible by

Concepts Covered - 2

Some Standard Expansions (Part 1)

We know the binomial expansion,

$
(\mathrm{x}+\mathrm{y})^{\mathrm{n}}={ }^{\mathrm{n}} \mathrm{C}_0 \mathrm{x}^{\mathrm{n}}+{ }^{\mathrm{n}} \mathrm{C}_1 \mathrm{x}^{\mathrm{n}-1} \mathrm{y}+{ }^{\mathrm{n}} \mathrm{C}_2 \mathrm{x}^{\mathrm{n}-2} \mathrm{y}^2+\cdots+{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{n}} \mathrm{y}^{\mathrm{n}}
$

i.e. $\quad(x+y)^n=\sum_{r=0}^n{ }^n C_r x^{n-r} y^r$
1. Replace ' $y$ ' with ' $-y$ ' in the binomial expansion, we get

$
\begin{aligned}
& (x-y)^n={ }^n C_0 x^n-{ }^n C_1 x^{n-1} y+{ }^n C_2 x^{\mathrm{n}-2} y^2-\cdots+(-1)^{\mathrm{r} n} C_r x^{\mathrm{n}-\mathrm{r}} y^{\mathrm{r}}+\cdots+(-1)^{\mathrm{n}{ }^n} C_n y^{\mathrm{n}} \\
& \text { or } \quad(\mathrm{x}-\mathrm{y})^{\mathrm{n}}=\sum_{\mathrm{r}=0}^{\mathrm{n}}(-1)^{\mathrm{r} n} \mathrm{C}_{\mathrm{r}} \mathrm{x}^{\mathrm{n}-\mathrm{r}} y^{\mathrm{r}}
\end{aligned}
$

2. In the binomial expansion, $(x+y)^n$ replace ' $x$ ' by 1 and ' $y$ ' by $x$

$
\begin{aligned}
& (1+\mathrm{x})^{\mathrm{n}}={ }^{\mathrm{n}} \mathrm{C}_0 \mathrm{x}^0+{ }^{\mathrm{n}} \mathrm{C}_1 \mathrm{x}^1+{ }^{\mathrm{n}} \mathrm{C}_2 \mathrm{x}^2+\cdots+{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}} \mathrm{x}^{\mathrm{r}}+\cdots+{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{n}} \mathrm{x}^{\mathrm{n}} \\
& \text { or } \quad(1+\mathrm{x})^{\mathrm{n}}=\sum_{\mathrm{r}=0}^{\mathrm{n}}{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}} \mathrm{x}^{\mathrm{r}}
\end{aligned}
$

3. In the binomial expansion, $(x+y)^n$ replace ' $x$ ' by ' 1 ' and ' $y$ ' by ' $-x$ '

$
\begin{aligned}
& (1-\mathrm{x})^{\mathrm{n}}={ }^{\mathrm{n}} \mathrm{C}_0 \mathrm{x}^0-{ }^{\mathrm{n}} \mathrm{C}_1 \mathrm{x}^1+{ }^{\mathrm{n}} \mathrm{C}_2 \mathrm{x}^2-\cdots+(-1)^{\mathrm{r}}{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}} \mathrm{x}^{\mathrm{r}}+\cdots+(-1)^{\mathrm{n}}{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{n}} \mathrm{x}^{\mathrm{n}} \\
& \text { or } \quad(1-x)^n=\sum_{r=0}^n(-1)^r{ }^n C_r x^r
\end{aligned}
$

Some Standard Expansions (Part 2)

4. Addition: $(x+y)^n+(x-y)^n$

$
(x+y)^n+(x-y)^n=2\left[{ }^n C_0 x^n y^0+{ }^n C_2 x^{n-2} y^2+{ }^n C_4 x^{n-4} y^4+\ldots .\right]
$
If ' $n$ ' is odd then number of terms is $\frac{n+1}{2}$
If $n^{\prime}$ is even then number of terms is $\frac{n^2}{2}+1$
5. Subtraction: $(x+y)^n-(x-y)^n$

$
(x+y)^n-(x-y)^n=2\left[{ }^n C_1 x^{n-1} y^1+{ }^n C_3 x^{n-3} y^3+{ }^n C_5 x^{n-5} y^5+\ldots \ldots\right]
$
If $n$ is odd, then the number of terms is $\frac{n+1}{2}$
If $n$ is even, then the number of terms is $\frac{n}{2}$

Study it with Videos

Some Standard Expansions (Part 1)
Some Standard Expansions (Part 2)

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Get Answer to all your questions

Back to top