Unable to Download JEE Main Admit Card 2025 - Complete Guide

Some Standard Expansions - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • Some Standard Expansions (Part 2) is considered one of the most asked concept.

  • 87 Questions around this concept.

Solve by difficulty

Remainder when $7^{100}$ is divided by 25 is

If $(\sqrt{2}+1)^6=I+F_{\text {where }} \leq F<1$ and $I \in N{\text { then the value of } \mathrm{I}}$ is

If $(1+x)^n-C_0+C_1 x+C_2 x^2+C_3 x^3+\cdots+C_n x^n$, then $\mathrm{C}_0 \mathrm{C}_1+\mathrm{C}_1 \mathrm{C}_2+\cdots+\mathrm{C}_{\mathrm{n}-1} \mathrm{C}_{\mathrm{n}}$ is equal to

If $(1+x)^n=C_0+C_1 x+C_2 x^2+\ldots \ldots .+C_n x^n$, then the value of $2 \mathrm{C}_0+4 \mathrm{C}_1+6 \mathrm{C}_2+\ldots \ldots \ldots+2(\mathrm{n}+1) \mathrm{C}_{\mathrm{n}}$ will be

If $(1+x)^n=C_0+C_1 x+C_2 x^2+\ldots+C_n x^n$, then the value of $\sum_{\mathrm{k}=0}^{\mathrm{n}}(\mathrm{k}+1)^2 \cdot C_k$

If $\{x\}$ denotes the fractional part of $x$, then $\left\{\frac{3^{2 n}}{8}\right\}, n \in N$ is

If $\left(1+2 x+3 x^2\right)^{10}=a_0+a_1 x+a_2 x^2+\ldots+a_{20} x^{20}$, then $a_1$ equals

VIT - VITEEE 2025

National level exam conducted by VIT University, Vellore | Ranked #11 by NIRF for Engg. | NAAC A++ Accredited | Last Date to Apply: 31st March | NO Further Extensions!

UPES B.Tech Admissions 2025

Ranked #42 among Engineering colleges in India by NIRF | Highest CTC 50 LPA , 100% Placements | Last Date to Apply: 28th March

If $\left(1+x-2 x^2\right)^5=1+a_1 x+a_2 x^2+\ldots+a_{10} x^{10}$, then $a_2+a_4+a_6+\ldots+a_{10}$

If $\mathrm{a}_{\mathrm{k}}$ is the coefficient of $\mathrm{x}^{\mathrm{k}}$ in the expansion of $\left(1+\mathrm{x}+\mathrm{x}^2\right)^{\mathrm{n}}$ for $\mathrm{k}=0,1,2, \ldots \ldots, 2 \mathrm{n}$ then $5 \cdot \mathrm{a}_1+10 \cdot \mathrm{a}_2+15 \cdot \mathrm{a}_3+\ldots \ldots+10 \cdot \mathrm{na}_{2 \mathrm{n}}$

JEE Main 2025 - 10 Full Mock Test
Aspirants who are preparing for JEE Main can download JEE Main 2025 mock test pdf which includes 10 full mock test, high scoring chapters and topics according to latest pattern and syllabus.
Download EBook

The number  $101^{100}-1$  is divisible by

Concepts Covered - 2

Some Standard Expansions (Part 1)

We know the binomial expansion,

$
(\mathrm{x}+\mathrm{y})^{\mathrm{n}}={ }^{\mathrm{n}} \mathrm{C}_0 \mathrm{x}^{\mathrm{n}}+{ }^{\mathrm{n}} \mathrm{C}_1 \mathrm{x}^{\mathrm{n}-1} \mathrm{y}+{ }^{\mathrm{n}} \mathrm{C}_2 \mathrm{x}^{\mathrm{n}-2} \mathrm{y}^2+\cdots+{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{n}} \mathrm{y}^{\mathrm{n}}
$

i.e. $\quad(x+y)^n=\sum_{r=0}^n{ }^n C_r x^{n-r} y^r$
1. Replace ' $y$ ' with ' $-y$ ' in the binomial expansion, we get

$
\begin{aligned}
& (x-y)^n={ }^n C_0 x^n-{ }^n C_1 x^{n-1} y+{ }^n C_2 x^{\mathrm{n}-2} y^2-\cdots+(-1)^{\mathrm{r} n} C_r x^{\mathrm{n}-\mathrm{r}} y^{\mathrm{r}}+\cdots+(-1)^{\mathrm{n}{ }^n} C_n y^{\mathrm{n}} \\
& \text { or } \quad(\mathrm{x}-\mathrm{y})^{\mathrm{n}}=\sum_{\mathrm{r}=0}^{\mathrm{n}}(-1)^{\mathrm{r} n} \mathrm{C}_{\mathrm{r}} \mathrm{x}^{\mathrm{n}-\mathrm{r}} y^{\mathrm{r}}
\end{aligned}
$

2. In the binomial expansion, $(x+y)^n$ replace ' $x$ ' by 1 and ' $y$ ' by $x$

$
\begin{aligned}
& (1+\mathrm{x})^{\mathrm{n}}={ }^{\mathrm{n}} \mathrm{C}_0 \mathrm{x}^0+{ }^{\mathrm{n}} \mathrm{C}_1 \mathrm{x}^1+{ }^{\mathrm{n}} \mathrm{C}_2 \mathrm{x}^2+\cdots+{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}} \mathrm{x}^{\mathrm{r}}+\cdots+{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{n}} \mathrm{x}^{\mathrm{n}} \\
& \text { or } \quad(1+\mathrm{x})^{\mathrm{n}}=\sum_{\mathrm{r}=0}^{\mathrm{n}}{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}} \mathrm{x}^{\mathrm{r}}
\end{aligned}
$

3. In the binomial expansion, $(x+y)^n$ replace ' $x$ ' by ' 1 ' and ' $y$ ' by ' $-x$ '

$
\begin{aligned}
& (1-\mathrm{x})^{\mathrm{n}}={ }^{\mathrm{n}} \mathrm{C}_0 \mathrm{x}^0-{ }^{\mathrm{n}} \mathrm{C}_1 \mathrm{x}^1+{ }^{\mathrm{n}} \mathrm{C}_2 \mathrm{x}^2-\cdots+(-1)^{\mathrm{r}}{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}} \mathrm{x}^{\mathrm{r}}+\cdots+(-1)^{\mathrm{n}}{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{n}} \mathrm{x}^{\mathrm{n}} \\
& \text { or } \quad(1-x)^n=\sum_{r=0}^n(-1)^r{ }^n C_r x^r
\end{aligned}
$

Some Standard Expansions (Part 2)

4. Addition: $(x+y)^n+(x-y)^n$

$
(x+y)^n+(x-y)^n=2\left[{ }^n C_0 x^n y^0+{ }^n C_2 x^{n-2} y^2+{ }^n C_4 x^{n-4} y^4+\ldots .\right]
$
If ' $n$ ' is odd then number of terms is $\frac{n+1}{2}$
If $n^{\prime}$ is even then number of terms is $\frac{n^2}{2}+1$
5. Subtraction: $(x+y)^n-(x-y)^n$

$
(x+y)^n-(x-y)^n=2\left[{ }^n C_1 x^{n-1} y^1+{ }^n C_3 x^{n-3} y^3+{ }^n C_5 x^{n-5} y^5+\ldots \ldots\right]
$
If $n$ is odd, then the number of terms is $\frac{n+1}{2}$
If $n$ is even, then the number of terms is $\frac{n}{2}$

Study it with Videos

Some Standard Expansions (Part 1)
Some Standard Expansions (Part 2)

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Get Answer to all your questions

Back to top