UPES B.Tech Admissions 2025
Ranked #42 among Engineering colleges in India by NIRF | Highest CTC 50 LPA , 100% Placements
General Term of Binomial Expansion is considered one the most difficult concept.
Middle Term is considered one of the most asked concept.
298 Questions around this concept.
In the binomial expansion of the sum of 5th and 6th terms is zero, then equals:
What is the 5th term in the expansion of
coefficient of x5 in the expansion of is
Also Check: Crack JEE Main 2025 - Join Our Free Crash Course Now!
JEE Main 2025: Sample Papers | Syllabus | Mock Tests | PYQs | Video Lectures
JEE Main 2025: Preparation Guide | High Scoring Topics | Study Plan 100 Days
The term that is independent of x, in the expression is:
The term independent of x in the expansion of
The coefficient of a4b5 in the expansion of (a + b)9 is
In the expansion of , the constant term is:
If the coefficients of the and terms in the expansion of are equal, then is equal to
Find the coefficient of in the expansion of .
The coefficient of y in the expansion of is
General Term
Sometimes we are interested only in a certain term of a binomial expansion. We do not need to fully expand a binomial to find a single specific term.
$(r+1)^{\text {th }}$ term is called as general term in $(x+y)^n$ and general term is given by
$
\mathrm{T}_{\mathrm{r}+1}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}} \mathrm{x}^{\mathrm{n}-\mathrm{r}} \cdot \mathrm{y}^{\mathrm{r}}
$
Term independent of $\mathbf{x}$
It means a term containing $x^0$,
For example, to find term independent of x in $\left(x-\frac{1}{x}\right)^{20}$
$
\begin{aligned}
& \left(x-\frac{1}{x}\right)^{20} \\
& \Rightarrow \quad T_{r+1}={ }^{20} C_r x^{20-r}(-1)^r \frac{1}{x^r}=20 C_r x^{20-2 r}(-1)^r \\
& \Rightarrow \quad 20-2 r=0 ; r=10 \\
& \Rightarrow \quad 11^{\text {th }} \text { term is independent of } x
\end{aligned}
$
$(p+1)^{\text {th }}$ term from the end
The binomial expansion
$
(\mathrm{x}+\mathrm{y})^{\mathrm{n}}={ }^{\mathrm{n}} \mathrm{C}_0 \mathrm{x}^{\mathrm{n}}+{ }^{\mathrm{n}} \mathrm{C}_1 \mathrm{x}^{\mathrm{n}-1} \mathrm{y}+{ }^{\mathrm{n}} \mathrm{C}_2 \mathrm{x}^{\mathrm{n}-2} \mathrm{y}^2+\cdots+{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{n}} \mathrm{y}^{\mathrm{n}}
$
From Starting
$
\underbrace{{ }^n \mathrm{C}_0 x^n}_{\begin{array}{c}
1^{\text {st }} \\
\text { term }
\end{array}}+\underbrace{{ }^n \mathrm{C}_1 x^{n-1} y}_{\begin{array}{c}
2^{\text {nd }} \\
\text { term }
\end{array}}+\underbrace{{ }^{\mathrm{n}} \mathrm{C}_2 \mathrm{x}^{\mathrm{n}-2} y^2}_{\begin{array}{c}
\mathbf{n}^{\text {th }} \\
\text { term }
\end{array}}+\cdots+\underbrace{{ }^n C_{n-1} x y_n-1}_{\begin{array}{c}
(\mathrm{n}+1)^{\mathrm{th}} \\
\text { term }
\end{array}} \underbrace{n}
$
From the End
$
\underbrace{{ }^n \mathrm{C}_0 y^n}_{\begin{array}{c}
1^{\text {st }} \\
\text { term }
\end{array}}+\underbrace{{ }^n \mathrm{C}_1 y^{n-1} x}_{\begin{array}{c}
2^{\text {nd }} \\
\text { term }
\end{array}}+{ }^{\mathrm{n}} \mathrm{C}_2 \mathrm{y}^{\mathrm{n}-2} \mathrm{x}^2+\cdots+\underbrace{{ }^n C_{n-1} y x^{n-1}}_{\begin{array}{c}
\mathbf{n}^{\text {th }} \\
\text { term }
\end{array}}+\underbrace{{ }^n \mathrm{C}_n x^n}_{\begin{array}{c}
(\mathrm{n}+1)^{\text {th }} \\
\text { term }
\end{array}}
$
(Using relation ${ }^n C_r={ }^n C_{(n-r) \text { ) }}$
Now,
Consider the binomial expansion
$
(\mathrm{y}+\mathrm{x})^{\mathrm{n}}={ }^{\mathrm{n}} \mathrm{C}_0 \mathrm{y}^{\mathrm{n}}+{ }^{\mathrm{n}} \mathrm{C}_1 \mathrm{y}^{\mathrm{n}-1} \mathrm{x}+{ }^{\mathrm{n}} \mathrm{C}_2 \mathrm{y}^{\mathrm{n}-2} \mathrm{x}^2+\cdots+{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{n}} \mathrm{x}^{\mathrm{n}}
$
Just observe that, $(p+1)^{\text {th }}$ term from the end of the expansion of $(x+y)^n=(p+1)^{\text {th }}$ term from the beginning of the expansion of
$
(y+x)^n={ }^n C_p y^{n-p} x^p
$
Rational term in the expansion of $\left(\mathrm{x}^{1 / \mathrm{a}}+\mathrm{y}^{1 / \mathrm{b}}\right)^{\mathrm{N}}, \mathrm{x}, \mathrm{y} \in$ prime numbers.
First, find $T_{r+1}={ }^N C_r\left(x^{1 / a}\right)^{N-r}\left(y^{1 / b}\right)^r$
$
\therefore \quad T_{r+1}={ }^N C_r \cdot x^{(N-r) / a} \cdot y^{r / b}
$
By observation, when indices of $x$ and $y$ are integers, then the entire term will be rational.
For example,
Find the number of terms in the expansion of $(\sqrt[4]{9}+\sqrt[6]{8})^{100}$ which are rational
To make x and y as prime numbers, we can rewrite the expression as
$
\therefore \text { General term, } \begin{aligned}
T_{r+1} & ={ }^{100} C_r\left(3^{1 / 2}\right)^{100-r} \cdot\left(2^{1 / 2}\right)^r \\
& ={ }^{100} C_r \cdot 3^{\frac{100-r}{2}} \cdot 2^{r / 2} \\
& ={ }^{100} C_r \cdot 3^{50-r / 2} \cdot 2^{r / 2}
\end{aligned}
$
Now, $\quad 0 \leq r \leq 100$
For $r=0,2,4,6,8, \ldots, 100$, indices of 3 and 2 are positive integers.
Hence, the number of terms which are rational $=50+1=51$
The middle term in the expansion $(x+y)^n$, depends on the value of ' $n$ '.
Case 1 When ' $n$ ' is even
If n is even, and the number of terms in the expansion is $\mathrm{n}+1$, so $\mathrm{n}+1$ is an odd number therefore only one middle term is obtained which is
$
\left(\frac{\mathrm{n}}{2}+1\right)_{\text {term }}^{\mathrm{th}}
$
It is given by
$
\mathrm{T}_{\frac{\mathrm{n}}{2}+1}=\binom{\mathrm{n}}{\frac{\mathrm{n}}{2}} x^{\frac{\mathrm{n}}{2}} y^{\frac{\mathrm{n}}{2}}
$
Case 2 When ' $n$ ' is odd
It is given by
$
T_{\frac{n+1}{2}}=\binom{n}{\frac{n1}{2}} x^{\frac{n+1}{2}} \cdot y^{\frac{n1}{2}} \text { and } T_{\frac{n+3}{2}}=\binom{n}{\frac{n+1}{2}} x^{\frac{n1}{2}} \cdot y^{\frac{n+1}{2}}
$
Note:
The Binomial Coefficient of the middle term is the greatest among all binomial coefficients in an expansion.
So if $n$ is even, then ${ }^n C_r$ is largest if $r=n / 2$
And if n is odd, then ${ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}$ is largest if $\mathrm{r}=\frac{\frac{n1}{2}}{}$ or $\frac{n+1}{2}$, and both these values of ${ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}$ are equal.
If consecutive coefficients are given
If in the question, coefficients of consecutive terms, like $r^{\text {th }},(r+1)^{\text {th }}$ and $(r+2)^{\text {th }}$ and so on $\ldots$ are involved, then to solve divide consecutive coefficients pairwise.
$
\text { i.e. } \frac{\text { coefficient of }(\mathrm{r}+1) \text { th of term }}{\text { coefficient of }(\mathrm{r}) \text { th of term }}, \frac{\text { coefficient of }(\mathrm{r}+2) \text { th of term }}{\text { coefficient of }(\mathrm{r}+1) \text { th of term }} \ldots
$
And with the help of the given condition in the question, you get equations. Solve these equations to get the answer.
Let's understand this by an example,
If the coefficients of $\mathrm{r}^{\text {th }},(\mathrm{r}+1)^{\text {th }}$ and $(\mathrm{r}+2)^{\text {th }}$ terms of the expansion $(1+x)^{\mathrm{n}}$ are in AP, and the relation between n and r is asked (where n is a positive integer), then
From the concept of the general term
$
\begin{aligned}
T_r & =T_{(r-1)+1}={ }^n C_{r-1} x^{r-1} \\
T_{r+1} & ={ }^n C_r x^r \text { and } T_{r+2}=T_{(r+1)+1}={ }^n C_{r+1} x^{r+1}
\end{aligned}
$
$\therefore$ Coefficients of $r$ th, $(r+1)$ th and $(r+2)$ th terms in the expansion of
$
(1+x)^n \text { are }{ }^n C_{r-1},{ }^n C_r,{ }^n C_{r+1}
$
$\because$ Given, ${ }^n C_{r-1},{ }^n C_r,{ }^n C_{r+1}$ are in AP. and $\quad n \geq r+1$
\begin{aligned}
& \therefore \frac{{ }^n C_{r-1}}{{ }^n C_r}, 1, \frac{{ }^n C_{r+1}}{{ }^n C_r} \text { are also in AP. } \\
& \Rightarrow \frac{r}{n-r+1}, 1, \frac{n-r}{r+1} \text { are in AP. } \\
& \Rightarrow 1-\frac{r}{n-r+1}=\frac{n-r}{r+1}-1 \Rightarrow \frac{n-2 r+1}{n-r+1}=\frac{n-2 r-1}{r+1} \\
& \Rightarrow n r-2 r^2+r+n-2 r+1=n^2-2 n r-n-n r+2 r^2+r+n-2 r-1 \\
& \Rightarrow \quad n^2-4 n r+4 r^2=n+2 \Rightarrow(n-2 r)^2=n+2
\end{aligned}
If consecutive terms are given
If in the question, consecutive terms $T_r, T_{r+1}, T_{r+2}$, and so on.... are given. Then divide consecutive coefficients pairwise i.e. $\frac{\mathrm{T}_{\mathrm{r}+1}}{\mathrm{~T}_{\mathrm{r}}}=\alpha_1, \frac{\mathrm{~T}_{\mathrm{r}+2}}{\mathrm{~T}_{\mathrm{r}+1}}=\alpha_2, \frac{\mathrm{~T}_{\mathrm{r}+3}}{\mathrm{~T}_{\mathrm{r}+2}}=\alpha_3 \ldots \ldots \ldots$
Now divide $a_2$ by $a_1$ and $a_3$ by $a_2$...to solve the question.
"Stay in the loop. Receive exam news, study resources, and expert advice!"