JEE Main Form Correction 2025 - Date, Procedure, Guidelines, Fee

# An Important Theorem - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

## Quick Facts

• 15 Questions around this concept.

## Solve by difficulty

$\text { If } \frac{1}{n+1}{ }^n \mathrm{C}_{\mathrm{n}}+\frac{1}{n}{ }^n \mathrm{C}_{\mathrm{n}-1}+\ldots+\frac{1}{2}{ }^n \mathrm{C}_1+{ }^n \mathrm{C}_0=\frac{1023}{10} \text { then } n \text { is equal to }$

## Concepts Covered - 1

An Important Theorem

Finding nature of an integral part of the expression.

If the given expansion is in the form of $\mathrm{N}=(\mathrm{a}+\sqrt{\mathrm{b}})^{\mathrm{n}} \quad(\mathrm{n} \in \mathrm{N})$

Working rule:

Step 1: $\mathrm{Choose\;\;N}^{\prime}=(\mathrm{a}-\sqrt{\mathrm{b}})^{\mathrm{n}} \text { or }(\sqrt{\mathrm{b}}-\mathrm{a})^{\mathrm{n}} \text { according as a }>\sqrt{\mathrm{b}} \text { or } \sqrt{\mathrm{b}}>\mathrm{a}$

Step 2: Use N + N’ or N - N’ such that result is an integer

I.e. $\mathrm{(a+\sqrt{b})^n+(a-\sqrt{b})^n\;\;or\;\;(a+\sqrt{b})^n-(a-\sqrt{b})^n\;\;is\;\;an\;integer}$

Step 3: Now use the concept greatest integer function and fractional part of a function, N = I + f, where I is an integral part of N i.e., [N] and f is a fractional part of N, i.e. { N }.

For example, the integral part of $P=(3 \sqrt{3}+5)^{2 n+1}(n \in N)$ is an even number.

Now consider, $P^{\prime}=(3 \sqrt{3}-5)^{2 n+1} \text { here } 0

Use, $P-P^{\prime}=2\left[^{2 n+1} C_{1}(3 \sqrt{3})^{2 n} 5^{1}+^{2 n+1} C_{3}(3 \sqrt{3})^{2 n-2}(5)^{3}+\ldots \ldots .\right]$

$\begin{array}{l}{I+f-P^{\prime}=2 k(k \in N)}\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\mathrm{ (P=I+f )} \\\\ {-1

Hence, integral part of $P=(3 \sqrt{3}+5)^{2 n+1}(n \in N)$  is an even integer

## Study it with Videos

An Important Theorem

"Stay in the loop. Receive exam news, study resources, and expert advice!"