Amity University Noida B.Tech Admissions 2025
ApplyAmong Top 30 National Universities for Engineering (NIRF 2024)
15 Questions around this concept.
Finding the nature of an integral part of the expression.
If the given expansion is in the form of $N=(a+\sqrt{b})^n \quad(n \in N)$
Working rule:
Step 1: Choose $\mathrm{N}^{\prime}=(\mathrm{a}-\sqrt{\mathrm{b}})^{\mathrm{n}}$ or $(\sqrt{\mathrm{b}}-\mathrm{a})^{\mathrm{n}}$ according as $\mathrm{a}>\sqrt{\mathrm{b}}$ or $\sqrt{\mathrm{b}}>\mathrm{a}$
Step 2: Use N + N' or $\mathrm{N}-\mathrm{N}$ ' such that result is an integer
I.e. $(a+\sqrt{b})^n+(a-\sqrt{b})^n$ or $(a+\sqrt{b})^n-(a-\sqrt{b})^n$ is an integer
Step 3: Now use the concept of greatest integer function and fractional part of a function, $N=I+f$, where I am an integral part of $N$ i.e., [ $N$ ] and $f$ is a fractional part of $N$, i.e. \{ $N$ \}.
For example, the integral part of $P=(3 \sqrt{3}+5)^{2 n+1}(n \in N)$ is an even number.
Now consider, $P^{\prime}=(3 \sqrt{3}-5)^{2 n+1}$ here $0<P^{\prime}<1$
Use, $P-P^{\prime}=2\left[{ }^{2 n+1} C_1(3 \sqrt{3})^{2 n} 5^1+{ }^{2 n+1} C_3(3 \sqrt{3})^{2 n-2}(5)^3+\ldots \ldots\right]$
$I+f-P^{\prime}=2 k(k \in N) \quad(\mathrm{P}=\mathrm{I}+\mathrm{f})$
$-1<f-P^{\prime}<1$ but $f-P^{\prime}$ is an integer $\Rightarrow f-P^{\prime}=0 \Rightarrow I=2 k$
Hence, integral part of $P=(3 \sqrt{3}+5)^{2 n+1}(n \in N)$ is an even integer
"Stay in the loop. Receive exam news, study resources, and expert advice!"