How Many Hours of Study is Required to Crack IIT JEE Main 2025 - Expert Tips

Important Result (Comparison) - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • 4 Questions around this concept.

Solve by difficulty

If y=(x)^{3x} for x>2, which of the following is true?

The value of the natural numbers n such that the inequality  2^n>2 n+1  is valid:

Concepts Covered - 1

Important Result (Comparison)

Important Result (Comparison)

$
2 \leq\left(1+\frac{1}{n}\right)^n<3, \quad n \in \mathbb{N}
$
Proof:
Expand, $\left(1+\frac{1}{n}\right)^n$ using binomial theorem

$
\begin{aligned}
\left(1+\frac{1}{n}\right)^n & =1+n \frac{1}{n}+\frac{n(n-1)}{2!} \frac{1}{n^2}+\frac{n(n-1)(n-2)}{3!} \frac{1}{n^3}+\cdots+\frac{n(n-1)(n-2) \cdots[n-(n-1)]}{n!} \frac{1}{n^n} \\
& =1+1+\frac{1}{2!}\left(1-\frac{1}{n}\right)+\frac{1}{3!}\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right)+\cdots+\frac{1}{n!}\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right) \cdots\left(1-\frac{n-1}{n}\right) \\
& <1+1+\frac{1}{2!}+\frac{1}{3!}+\cdots+\frac{1}{n!} \\
& <1+1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\cdots+\frac{1}{2^{n-1}}=1+1 \frac{\left\{1-\left(\frac{1}{2}\right)^n\right\}}{1-\frac{1}{2}}=1+2\left\{1-\left(\frac{1}{2}\right)^n\right\}=3-\frac{1}{2^{n-1}}
\end{aligned}
$
Hence, from above

$
2 \leq\left(1+\frac{1}{n}\right)^n<3, \quad n \geq 1.
$

Study it with Videos

Important Result (Comparison)

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Books

Reference Books

Important Result (Comparison)

Mathematics Textbook for Class VII

Page No. : 8.4

Line : 14

E-books & Sample Papers

Get Answer to all your questions

Back to top