Important Result (Comparison) - Practice Questions & MCQ

Updated on Sep 18, 2023 18:34 AM

Quick Facts

  • 4 Questions around this concept.

Solve by difficulty

If y=(x)^{3x} for x>2, which of the following is true?

The value of the natural numbers n such that the inequality  2^n>2 n+1  is valid:

Concepts Covered - 1

Important Result (Comparison)

Important Result (Comparison)

    2\leq\left ( 1+\frac{1}{n} \right )^n<3,\;\;\;\;\;n\in\mathbb{N}

Proof:

Expand, \\ \left ( 1+\frac{1}{n} \right )^n \text{using binomial theorem} \\\\

\begin{aligned}\left(1+\frac{1}{n}\right)^{n} &=1+n \frac{1}{n}+\frac{n(n-1)}{2 !} \frac{1}{n^{2}}+\frac{n(n-1)(n-2)}{3 !} \frac{1}{n^{3}}+\cdots+\frac{n(n-1)(n-2) \cdots[n-(n-1)]}{n !} \frac{1}{n^{n}} \\&={1+1+\frac{1}{2 !}\left(1-\frac{1}{n}\right)+\frac{1}{3 !}\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right)} {+\cdots+\frac{1}{n !}\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right) \dots\left(1-\frac{n-1}{n}\right)}\\&{<1+1+\frac{1}{2 !}+\frac{1}{3 !}+\cdots+\frac{1}{n !}}\\&{<1+1+\frac{1}{2}+\frac{1}{2^{2}}+\frac{1}{2^{3}}+\cdots+\frac{1}{2^{n-1}}}=1+1 \frac{\left\{1-\left(\frac{1}{2}\right)^{n}\right\}}{1-\frac{1}{2}}=1+2\left\{1-\left(\frac{1}{2}\right)^{n}\right\}=3-\frac{1}{2^{n-1}}\end{aligned}

Hence, from above

2\leq\left ( 1+\frac{1}{n} \right )^n<3,\;\;n\geq1

Study it with Videos

Important Result (Comparison)

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Books

Reference Books

Important Result (Comparison)

Mathematics Textbook for Class VII

Page No. : 8.4

Line : 14

Get Answer to all your questions

Back to top