UPES B.Tech Admissions 2025
ApplyRanked #42 among Engineering colleges in India by NIRF | Highest CTC 50 LPA , 100% Placements
Series Involving Binomial Coefficients is considered one of the most asked concept.
123 Questions around this concept.
In the expansion of the sum of the coefficient of the terms is
In the expansion of the sum of coefficients of odd powers of x is
If so, then the value of
Also Check: Crack JEE Main 2025 - Join Our Free Crash Course Now!
JEE Main 2025: Sample Papers | Syllabus | Mock Tests | PYQs | Video Lectures
JEE Main 2025: Preparation Guide | High Scoring Topics | Study Plan 100 Days
In the expansion of , the sum of the coefficient of odd powers of x is
In the expansion of , the sum of the coefficient of the terms is.
1. Sum of Binomial Coefficients
$
\begin{aligned}
& C_0+\mathrm{C}_1+C_2+C_3+\ldots \ldots+C_n=2^n \\
& \text { or } \sum_{r=0}^n{ }^n C_r=2^n
\end{aligned}
$
2. Sum of Binomial coefficients with alternate sign
$
\begin{aligned}
& C_0-\mathrm{C}_1+C_2-C_3+\ldots \ldots+(-1)^n C_n=0 \\
& \text { or } \sum_{r=0}^n(-1)^r{ }^n C_r=0
\end{aligned}
$
3. Sum of the Binomial coefficients of the odd terms \& Sum of the Binomial coefficients of the even terms
Adding the above two series we get,
$
\begin{aligned}
& 2 \cdot\left(\mathrm{C}_0+\mathrm{C}_2+\mathrm{C}_4+\ldots \ldots\right)=2^n \\
& \mathrm{C}_0+\mathrm{C}_2+\mathrm{C}_4+\ldots \ldots=2^{n-1}
\end{aligned}
$
Similarly, on subtracting we get,
$
\mathrm{C}_1+\mathrm{C}_3+\mathrm{C}_5 \ldots \ldots=2^{n-1}
$
Hence, the sum of the binomial coefficients of the odd terms = Sum of the binomial coefficients of the even terms
$
\text { I.e. } C_1+C_3+C_5 \ldots \ldots=C_0+C_2+C_4+\ldots \ldots=2^{n-1}
$
"Stay in the loop. Receive exam news, study resources, and expert advice!"