JEE Main Cutoff for IIIT Srirangam 2024 - Check Here

Problems on Divisibility - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • 13 Questions around this concept.

Solve by difficulty

The number 101^{100}-1 is divisible by 

For every natural number  n, 3^{2 n+2}-8 n-9  is divisible by:

(1+x)^n-n x-1  is divisible by (where n \in N ):

 

The greatest integer, which divides the number  (101^{100}-1) is

49^n+16 n-1 is divisible by:

The difference between an integer and its cube is divisible by    

Concepts Covered - 2

Problems on Divisibility

Given Expression is divisible by an Integer
1. Expression, $(1+\mathrm{x})^{\mathrm{n}}-1$ is divisible by x because

$
\begin{aligned}
(1+x)^{\mathrm{n}}-1 & =\left({ }^{\mathrm{n}} \mathrm{C}_0+{ }^{\mathrm{n}} \mathrm{C}_1 \mathrm{x}+{ }^{\mathrm{n}} \mathrm{C}_2 \mathrm{x}^2+\ldots \ldots+{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{n}} \mathrm{x}^{\mathrm{n}}\right)-1 \\
& =\mathrm{x}\left[{ }^{\mathrm{n}} \mathrm{C}_1+{ }^{\mathrm{n}} \mathrm{C}_2 \mathrm{x}+\ldots \ldots .+{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{n}} \mathrm{x}^{\mathrm{n}-1}\right]
\end{aligned}
$

2. Expression, $(1+\mathrm{x})^{\mathrm{n}}-\mathrm{nx}-1$ is divisible by $\mathrm{x}^2$ because

$
\begin{aligned}
(1+x)^n-n x-1 & =\left({ }^n C_0+{ }^n C_1 x+{ }^n C_2 x^2+\ldots \ldots+{ }^n C_n x^n\right)-n x-1 \\
& =x^2\left[{ }^n C_2+{ }^n C_3 x+\ldots \ldots+{ }^n C_n x^{n-2}\right]
\end{aligned}
$
For example
Prove that $3^{2 n+2}-8 n-9$ is divisible by 8 if $n \in N$

$
\begin{aligned}
3^{2 n+2} & -8 n-9=(1+8)^{n+1}-8 n-9 \\
& =\left[1+(n+1) 8+{ }^{n+1} C_2 8^2+\ldots\right]-8 n-9 \\
& ={ }^{n+1} C_2 8^2+{ }^{n+1} C_3 8^3+{ }^{n+1} C_4 8^4+\ldots \\
& =8\left[{ }^{n+1} C_2 8+{ }^{n+1} C_3 8^2+{ }^{n+1} C_4 8^3+\ldots\right]
\end{aligned}
$

Which is divisible by 8.

Some standard results of Divisibility Problem

Divisibility: Important Results

1. The expression $\mathrm{a}^{\mathrm{n}}-\mathrm{b}^{\mathrm{n}}$ is divisible by $\mathrm{a}+\mathrm{b}$, if n is even.
2. The expression $\mathrm{a}^{\mathrm{n}}-\mathrm{b}^{\mathrm{n}}$ is divisible by $\mathrm{a}-\mathrm{b}$, if n is even or odd.
3. The expression $\mathrm{a}^{\mathrm{n}}+\mathrm{b}^{\mathrm{n}}$ is divisible by , $\mathrm{a}+\mathrm{b}$ if n is odd.

In all the above cases n is a natural number.
For Example
The expression $15^4-7^4$ is divisible by $(15+7)=22$ and $(15-7)=8$.

Study it with Videos

Problems on Divisibility
Some standard results of Divisibility Problem

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Get Answer to all your questions

Back to top