How Many Rough Sheets Are Given in JEE Main 2025? Check Here

Scalar Triple Product of Vectors - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • Scalar Triple Product is considered one of the most asked concept.

  • 58 Questions around this concept.

Solve by difficulty

If \left [ \vec{a}\times \vec{b}\: \: \vec{b} \times \vec{c}\: \: \vec{c} \times \vec{a} \right ]= \lambda\left [\vec{a}\: \vec{b}\: \vec{c}\right ]^{2}then \lambda is equal to:

$\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]$ is not equal to

$\begin{bmatrix} \hat{i}-\hat{j} & 2\hat{i}+3\hat{j} & -3\hat{i}-\hat{j} \end{bmatrix}=$

$\begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix}=\: \: ?\: \: \: \: ;\: \: if \: \: \vec{a}=\hat{i}-\hat{j},\: \vec{b}=2\hat{i}-2\hat{j}+\hat{k},\: \: \vec{c}=2\hat{i}+\hat{j}-3\hat{k}$

$\begin{bmatrix} \vec{a}-\vec{b} & \vec{b}-\vec{c} & \vec{c}-\vec{a} \end{bmatrix}=$

$\begin{bmatrix} \vec{a}+\vec{b} & \hat{j} & \hat{i}-\hat{k} \end{bmatrix}=$

$\begin{bmatrix} \vec{a}+\vec{b} &\vec{b}+\vec{c} &\vec{c}+\vec{a} \end{bmatrix}=$

VIT - VITEEE 2025

National level exam conducted by VIT University, Vellore | Ranked #11 by NIRF for Engg. | NAAC A++ Accredited | Last Date to Apply: 31st March | NO Further Extensions!

UPES B.Tech Admissions 2025

Ranked #42 among Engineering colleges in India by NIRF | Highest CTC 50 LPA , 100% Placements

$\begin{bmatrix} 2\hat{i} & 3\hat{j} & -5\hat{k} \end{bmatrix}=$

The value of $\mathrm{i} \cdot(\mathrm{j} \times \mathrm{k})+\mathrm{j} \cdot(\mathrm{i} \times \mathrm{k})+\mathrm{k} \cdot(\mathrm{i} \times \mathrm{j})$ is

JEE Main 2025 - 10 Full Mock Test
Aspirants who are preparing for JEE Main can download JEE Main 2025 mock test pdf which includes 10 full mock test, high scoring chapters and topics according to latest pattern and syllabus.
Download EBook

Find volume of tetrahedron formed by vectors $\hat{i}-\hat{j}+2 \hat{k}, 2 \hat{i}+\hat{j}$ and $\hat{j}-2 \hat{k}$ is :

Concepts Covered - 2

Scalar Triple Product

The scalar triple product (also called the mixed or box product) is defined as the dot product of one of the vectors with the cross product of the other two.
If $\vec{a}, \vec{b}$ and $\vec{c}$ are any three vectors, then their scalar product is defined as
$
\overrightarrow{\mathbf{a}} \cdot(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}) \text { and it is denoted as }\left[\begin{array}{lll}
\overrightarrow{\mathbf{a}} & \overrightarrow{\mathbf{b}} & \overrightarrow{\mathbf{c}}
\end{array}\right]
$

The scalar triple product can be evaluated numerically using any one of the following
$
\begin{array}{ll} 
& (\vec{a} \times \vec{b}) \cdot \vec{c}=\vec{a} \cdot(\vec{b} \times \vec{c})=\vec{b} \cdot(\vec{c} \times \overrightarrow{\mathbf{a}})=\overrightarrow{\mathbf{c}} \cdot(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}) \\
\text { i.e. } & {\left[\begin{array}{lll}
\overrightarrow{\mathbf{a}} & \vec{b} & \overrightarrow{\mathbf{c}}
\end{array}\right]=\left[\begin{array}{lll}
\vec{b} & \overrightarrow{\mathbf{c}} & \overrightarrow{\mathbf{a}}
\end{array}\right]=\left[\begin{array}{lll}
\overrightarrow{\mathbf{c}} & \overrightarrow{\mathbf{a}} & \vec{b}
\end{array}\right]=-\left[\begin{array}{lll}
\vec{b} & \overrightarrow{\mathbf{a}} & \overrightarrow{\mathbf{c}}
\end{array}\right]=-\left[\begin{array}{lll}
\overrightarrow{\mathbf{c}} & \vec{b} & \overrightarrow{\mathbf{a}}
\end{array}\right]}
\end{array}
$

If $\overrightarrow{\mathbf{a}}=a_1 \hat{\mathbf{i}}+a_2 \hat{\mathbf{j}}+a_3 \hat{\mathbf{k}}, \quad \overrightarrow{\mathbf{b}}=b_1 \hat{\mathbf{i}}+b_2 \hat{\mathbf{j}}+b_3 \hat{\mathbf{k}} \quad$ and $\quad \overrightarrow{\mathbf{c}}=c_1 \hat{\mathbf{i}}+c_2 \hat{\mathbf{j}}+c_3 \hat{\mathbf{k}}$ then
$
\begin{aligned}
{\left[\begin{array}{lll}
\overrightarrow{\mathbf{a}} & \overrightarrow{\mathbf{b}} & \overrightarrow{\mathbf{c}}
\end{array}\right] } & =(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}) \cdot \overrightarrow{\mathbf{c}}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
a_1 & a_2 & a_2 \\
b_1 & b_2 & b_3
\end{array}\right| \cdot\left(c_1 \hat{i}+c_2 \hat{j}+c_3 \hat{k}\right) \\
& =\left\lvert\, \begin{array}{ccc}
\hat{i} \cdot\left(c_1 \hat{i}+c_2 \hat{j}+c_3 \hat{k}\right) & \hat{j} \cdot\left(\begin{array}{c}
\left.c_1 \hat{i}+c_2 \hat{j}+c_3 \hat{k}\right) \\
a_1 \\
b_1
\end{array}\right. & \hat{k} \cdot\left(c_1 \hat{i}+c_2 \hat{j}+c_3 \hat{k}\right) \\
a_2 & a_2 \\
b_2
\end{array}\right.
\end{aligned}
$

$
=\left|\begin{array}{lll}
c_1 & c_2 & c_3 \\
a_1 & a_2 & a_3 \\
b_1 & b_2 & b_3
\end{array}\right|=\left|\begin{array}{lll}
a_1 & a_2 & a_3 \\
b_1 & b_2 & b_3 \\
c_1 & c_2 & c_3
\end{array}\right|
$

Also,
$
\begin{aligned}
{[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}] } & =\overrightarrow{\mathbf{a}} \cdot(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})=\left(a_1 \hat{i}+a_2 \hat{j}+a_3 \hat{k}\right) \cdot\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
b_1 & b_2 & b_2 \\
c_1 & c_2 & c_3
\end{array}\right| \\
& =\left|\begin{array}{lll}
a_1 & a_2 & a_3 \\
b_1 & b_2 & b_3 \\
c_1 & c_2 & c_3
\end{array}\right|
\end{aligned}
$

NOTE :
1. $\left[\begin{array}{lll}m \vec{a} & \vec{b} & \vec{c}\end{array}\right]=m\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]$, where $m$ is a scalar..
2. $\left[m_1 \vec{a} \quad m_2 \vec{b} \quad m_3 \vec{c}\right]=m_1 m_2 m_3\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]$, where $m_1, m_2, m_3$ are scalares.
3. $\left[\begin{array}{llll}\vec{a}+\vec{b} & \vec{c} & \vec{d}\end{array}\right]=\left[\begin{array}{lll}\vec{a} & \vec{c} & \vec{d}\end{array}\right]+\left[\begin{array}{lll}\vec{b} & \vec{c} & \vec{d}\end{array}\right]$

The necessary and sufficient condition for three non-zero, non-collinear vectors $\vec{a}, \vec{b}$ and $\vec{c}$ is coplanar is that $\left[\begin{array}{ll}\vec{a} & \vec{b} \\ \vec{c}\end{array}\right]=0$.

Geometrical Interpretation of Scalar Triple Product

Let vectors $\overrightarrow{\mathbf{a}}, \quad \overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{c}}$ represent the sides of a parallelepiped OA, OB and OC respectively. Then, $\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}$ is a vector perpendicular to the plane of $\overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{c}}$. Let $\theta$ be the angle between vectors $\overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{c}}$ and $\boldsymbol{\alpha}$ be the angle between $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}$.

If $\hat{\mathbf{n}}$ is a unit vector along $\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}$, then $\alpha$ is the angle between $\hat{\mathbf{n}}$ and $\overrightarrow{\mathbf{a}}$.

$\begin{aligned} {\left[\begin{array}{ll}\overrightarrow{\mathbf{a}} \mathbf{b} & \overrightarrow{\mathbf{c}}]\end{array}\right.} & =\overrightarrow{\mathbf{a}} \cdot(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}) \\ & =\overrightarrow{\mathbf{a}} \cdot(\mathbf{b} \mathbf{c} \sin \theta \hat{\mathbf{n}}) \\ & =(\mathbf{b} \mathbf{c} \sin \theta)(\overrightarrow{\mathbf{a}} \cdot \hat{\mathbf{n}}) \\ & =(\mathbf{b c} \sin \theta)(\mathbf{a} \cdot \mathbf{1} \cdot \cos \alpha) \\ & =(\mathbf{a} \cdot \cos \alpha)(\mathbf{b} \mathbf{c} \sin \theta) \\ & =(\text { Height }) \cdot(\text { Area of Base }) \\ & =\text { Volume of parallelepiped }\end{aligned}$

Volume of Tetrahedron

Tetrahedron is a pyramid having a triangular base. Therefore

$\therefore \quad$ Volume $=\frac{1}{6}\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]$

Study it with Videos

Scalar Triple Product
Geometrical Interpretation of Scalar Triple Product

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Books

Reference Books

Geometrical Interpretation of Scalar Triple Product

Mathematics for Joint Entrance Examination JEE (Advanced) : Vectors and 3D Geometry

Page No. : 3.37

Line : 9

E-books & Sample Papers

Get Answer to all your questions

Back to top