GNA University B.Tech Admissions 2025
100% Placement Assistance | Avail Merit Scholarships | Highest CTC 43 LPA
Scalar Triple Product is considered one of the most asked concept.
58 Questions around this concept.
If then
is equal to:
$\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]$ is not equal to
$\begin{bmatrix} \hat{i}-\hat{j} & 2\hat{i}+3\hat{j} & -3\hat{i}-\hat{j} \end{bmatrix}=$
JEE Main 2026: Preparation Tips & Study Plan | Previous 10 Year Questions
JEE Main 2026: 100 Days Study Plan | High Scoring Chapters and Topics | Preparation Tips
JEE Main 2025 Most Scoring Concept: January Session | April Session
Don't Miss: Best Public Engineering Colleges
$\begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix}=\: \: ?\: \: \: \: ;\: \: if \: \: \vec{a}=\hat{i}-\hat{j},\: \vec{b}=2\hat{i}-2\hat{j}+\hat{k},\: \: \vec{c}=2\hat{i}+\hat{j}-3\hat{k}$
$\begin{bmatrix} \vec{a}-\vec{b} & \vec{b}-\vec{c} & \vec{c}-\vec{a} \end{bmatrix}=$
$\begin{bmatrix} \vec{a}+\vec{b} & \hat{j} & \hat{i}-\hat{k} \end{bmatrix}=$
$\begin{bmatrix} \vec{a}+\vec{b} &\vec{b}+\vec{c} &\vec{c}+\vec{a} \end{bmatrix}=$
100% Placement Assistance | Avail Merit Scholarships | Highest CTC 43 LPA
Ranked #42 among Engineering colleges in India by NIRF | Highest Package 1.3 CR , 100% Placements | Last Date to Apply: 31st August | Admissions Closing Soon
$\begin{bmatrix} 2\hat{i} & 3\hat{j} & -5\hat{k} \end{bmatrix}=$
The value of $\mathrm{i} \cdot(\mathrm{j} \times \mathrm{k})+\mathrm{j} \cdot(\mathrm{i} \times \mathrm{k})+\mathrm{k} \cdot(\mathrm{i} \times \mathrm{j})$ is
Find volume of tetrahedron formed by vectors $\hat{i}-\hat{j}+2 \hat{k}, 2 \hat{i}+\hat{j}$ and $\hat{j}-2 \hat{k}$ is :
The scalar triple product (also called the mixed or box product) is defined as the dot product of one of the vectors with the cross product of the other two.
If $\vec{a}, \vec{b}$ and $\vec{c}$ are any three vectors, then their scalar product is defined as
$
\overrightarrow{\mathbf{a}} \cdot(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}) \text { and it is denoted as }\left[\begin{array}{lll}
\overrightarrow{\mathbf{a}} & \overrightarrow{\mathbf{b}} & \overrightarrow{\mathbf{c}}
\end{array}\right]
$
The scalar triple product can be evaluated numerically using any one of the following
$
\begin{array}{ll}
& (\vec{a} \times \vec{b}) \cdot \vec{c}=\vec{a} \cdot(\vec{b} \times \vec{c})=\vec{b} \cdot(\vec{c} \times \overrightarrow{\mathbf{a}})=\overrightarrow{\mathbf{c}} \cdot(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}) \\
\text { i.e. } & {\left[\begin{array}{lll}
\overrightarrow{\mathbf{a}} & \vec{b} & \overrightarrow{\mathbf{c}}
\end{array}\right]=\left[\begin{array}{lll}
\vec{b} & \overrightarrow{\mathbf{c}} & \overrightarrow{\mathbf{a}}
\end{array}\right]=\left[\begin{array}{lll}
\overrightarrow{\mathbf{c}} & \overrightarrow{\mathbf{a}} & \vec{b}
\end{array}\right]=-\left[\begin{array}{lll}
\vec{b} & \overrightarrow{\mathbf{a}} & \overrightarrow{\mathbf{c}}
\end{array}\right]=-\left[\begin{array}{lll}
\overrightarrow{\mathbf{c}} & \vec{b} & \overrightarrow{\mathbf{a}}
\end{array}\right]}
\end{array}
$
If $\overrightarrow{\mathbf{a}}=a_1 \hat{\mathbf{i}}+a_2 \hat{\mathbf{j}}+a_3 \hat{\mathbf{k}}, \quad \overrightarrow{\mathbf{b}}=b_1 \hat{\mathbf{i}}+b_2 \hat{\mathbf{j}}+b_3 \hat{\mathbf{k}} \quad$ and $\quad \overrightarrow{\mathbf{c}}=c_1 \hat{\mathbf{i}}+c_2 \hat{\mathbf{j}}+c_3 \hat{\mathbf{k}}$ then
$
\begin{aligned}
{\left[\begin{array}{lll}
\overrightarrow{\mathbf{a}} & \overrightarrow{\mathbf{b}} & \overrightarrow{\mathbf{c}}
\end{array}\right] } & =(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}) \cdot \overrightarrow{\mathbf{c}}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
a_1 & a_2 & a_2 \\
b_1 & b_2 & b_3
\end{array}\right| \cdot\left(c_1 \hat{i}+c_2 \hat{j}+c_3 \hat{k}\right) \\
& =\left\lvert\, \begin{array}{ccc}
\hat{i} \cdot\left(c_1 \hat{i}+c_2 \hat{j}+c_3 \hat{k}\right) & \hat{j} \cdot\left(\begin{array}{c}
\left.c_1 \hat{i}+c_2 \hat{j}+c_3 \hat{k}\right) \\
a_1 \\
b_1
\end{array}\right. & \hat{k} \cdot\left(c_1 \hat{i}+c_2 \hat{j}+c_3 \hat{k}\right) \\
a_2 & a_2 \\
b_2
\end{array}\right.
\end{aligned}
$
$
=\left|\begin{array}{lll}
c_1 & c_2 & c_3 \\
a_1 & a_2 & a_3 \\
b_1 & b_2 & b_3
\end{array}\right|=\left|\begin{array}{lll}
a_1 & a_2 & a_3 \\
b_1 & b_2 & b_3 \\
c_1 & c_2 & c_3
\end{array}\right|
$
Also,
$
\begin{aligned}
{[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}] } & =\overrightarrow{\mathbf{a}} \cdot(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})=\left(a_1 \hat{i}+a_2 \hat{j}+a_3 \hat{k}\right) \cdot\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
b_1 & b_2 & b_2 \\
c_1 & c_2 & c_3
\end{array}\right| \\
& =\left|\begin{array}{lll}
a_1 & a_2 & a_3 \\
b_1 & b_2 & b_3 \\
c_1 & c_2 & c_3
\end{array}\right|
\end{aligned}
$
NOTE :
1. $\left[\begin{array}{lll}m \vec{a} & \vec{b} & \vec{c}\end{array}\right]=m\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]$, where $m$ is a scalar..
2. $\left[m_1 \vec{a} \quad m_2 \vec{b} \quad m_3 \vec{c}\right]=m_1 m_2 m_3\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]$, where $m_1, m_2, m_3$ are scalares.
3. $\left[\begin{array}{llll}\vec{a}+\vec{b} & \vec{c} & \vec{d}\end{array}\right]=\left[\begin{array}{lll}\vec{a} & \vec{c} & \vec{d}\end{array}\right]+\left[\begin{array}{lll}\vec{b} & \vec{c} & \vec{d}\end{array}\right]$
The necessary and sufficient condition for three non-zero, non-collinear vectors $\vec{a}, \vec{b}$ and $\vec{c}$ is coplanar is that $\left[\begin{array}{ll}\vec{a} & \vec{b} \\ \vec{c}\end{array}\right]=0$.
Let vectors $\overrightarrow{\mathbf{a}}, \quad \overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{c}}$ represent the sides of a parallelepiped OA, OB and OC respectively. Then, $\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}$ is a vector perpendicular to the plane of $\overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{c}}$. Let $\theta$ be the angle between vectors $\overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{c}}$ and $\boldsymbol{\alpha}$ be the angle between $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}$.
If $\hat{\mathbf{n}}$ is a unit vector along $\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}$, then $\alpha$ is the angle between $\hat{\mathbf{n}}$ and $\overrightarrow{\mathbf{a}}$.
$\begin{aligned} {\left[\begin{array}{ll}\overrightarrow{\mathbf{a}} \mathbf{b} & \overrightarrow{\mathbf{c}}]\end{array}\right.} & =\overrightarrow{\mathbf{a}} \cdot(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}) \\ & =\overrightarrow{\mathbf{a}} \cdot(\mathbf{b} \mathbf{c} \sin \theta \hat{\mathbf{n}}) \\ & =(\mathbf{b} \mathbf{c} \sin \theta)(\overrightarrow{\mathbf{a}} \cdot \hat{\mathbf{n}}) \\ & =(\mathbf{b c} \sin \theta)(\mathbf{a} \cdot \mathbf{1} \cdot \cos \alpha) \\ & =(\mathbf{a} \cdot \cos \alpha)(\mathbf{b} \mathbf{c} \sin \theta) \\ & =(\text { Height }) \cdot(\text { Area of Base }) \\ & =\text { Volume of parallelepiped }\end{aligned}$
Volume of Tetrahedron
Tetrahedron is a pyramid having a triangular base. Therefore
$\therefore \quad$ Volume $=\frac{1}{6}\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]$
"Stay in the loop. Receive exam news, study resources, and expert advice!"