Scalar Triple Product of Vectors - Practice Questions & MCQ

Updated on Sep 18, 2023 18:34 AM

Quick Facts

  • Scalar Triple Product is considered one of the most asked concept.

  • 43 Questions around this concept.

Solve by difficulty

If \left [ \vec{a}\times \vec{b}\: \: \vec{b} \times \vec{c}\: \: \vec{c} \times \vec{a} \right ]= \lambda\left [\vec{a}\: \vec{b}\: \vec{c}\right ]^{2}then \lambda is equal to:

Concepts Covered - 0

Scalar Triple Product

The scalar triple product (also called the mixed or box product) is defined as the dot product of one of the vectors with the cross product of the other two.

If  \vec{a}, \vec{b} and \vec{c} are any three vectors, then their scalar product is defined as \vec{\mathbf{a}}\cdot \left ( \vec{\mathbf{b}}\times \vec{\mathbf{c}} \right ) and it is denoted as \left [ \vec{\mathbf{a}}\;\;\vec{\mathbf{b}}\;\;\vec{\mathbf{c}} \right ].

 

The scalar triple product can be evaluated numerically using any one of the following

\\\mathrm{\;\;\;\;\;\;\;\;\;\;}\left (\vec{\mathbf a} \times \vec{\mathbf b} \right ) \cdot \vec{\mathbf c}=\vec{\mathbf a} \cdot \left (\vec{\mathbf b} \times \vec{\mathbf c} \right )=\vec{\mathbf b} \cdot \left (\vec{\mathbf c} \times \vec{\mathbf a} \right )=\vec{\mathbf c} \cdot \left (\vec{\mathbf a} \times \vec{\mathbf b} \right )\\\\\text{i.e.}\;\;\;\;\;\;\left [ \vec{\mathbf a}\;\;\vec{\mathbf b}\;\;\vec{\mathbf c} \right ]=\left [ \vec{\mathbf b}\;\;\vec{\mathbf c}\;\;\vec{\mathbf a} \right ]=\left [ \vec{\mathbf c}\;\;\vec{\mathbf a}\;\;\vec{\mathbf b} \right ]=-\left [ \vec{\mathbf b}\;\;\vec{\mathbf a}\;\;\vec{\mathbf c} \right ]=-\left [ \vec{\mathbf c}\;\;\vec{\mathbf b}\;\;\vec{\mathbf a} \right ]

\\ \text {If } \vec {\mathbf a}=a_{1} \hat{\mathbf{i}}+a_{2} \hat{\mathbf{j}}+a_{3} \hat{\mathbf{k}} ,\;\; \vec {\mathbf{b}}=b_{1} \hat{\mathbf{i}}+b_{2} \hat{\mathbf{j}}+b_{3} \hat{\mathbf{k}}\;\;\text { and }\;\; \vec {\mathbf c}=c_{1} \hat{\mathbf{i}}+c_{2} \hat{\mathbf{j}}+c_{3} \hat{\mathbf{k}}\;\;\text{then}\\\\\mathrm{\;}\left [ \vec{\mathbf a}\;\;\vec{\mathbf b}\;\;\vec{\mathbf c} \right ]=\left ( \vec{\mathbf a}\times \vec{\mathbf b} \right )\cdot \vec{\mathbf c}=\begin{vmatrix} \hat i & \hat j & \hat k\\ a_1 &a_2 &a_2 \\ b_1 &b_2 &b_3 \end{vmatrix}\cdot\left ( c_1\hat i+c_2\hat j+c_3\hat k \right )\\\\\\\mathrm{\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;}=\begin{vmatrix} \hat i\cdot \left ( c_1\hat i+c_2\hat j+c_3\hat k \right ) & \hat j \cdot \left ( c_1\hat i+c_2\hat j+c_3\hat k \right )& \hat k\cdot \left ( c_1\hat i+c_2\hat j+c_3\hat k \right )\\ a_1 &a_2 &a_2 \\ b_1 &b_2 &b_3 \end{vmatrix}\\\\
\\\mathrm{\;\;\;\;\;\;\;\;\;}\;\;\;\;\;\;\;=\left|\begin{array}{lll}{c_{1}} & {c_{2}} & {c_{3}} \\ {a_{1}} & {a_{2}} & {a_{3}} \\ {b_1} & {b_{2}} & {b_{3}}\end{array}\right|\mathrm{}=\left|\begin{array}{lll}{a_{1}} & {a_{2}} & {a_{3}} \\ {b_{1}} & {b_{2}} & {b_{3}} \\ {c_{1}} & {c_{2}} & {c_{3}}\end{array}\right|\\\\\text{Also,}\mathrm{\;}\left [ \vec{\mathbf a}\;\;\vec{\mathbf b}\;\;\vec{\mathbf c} \right ]=\vec{\mathbf a}\cdot\left ( \vec{\mathbf b}\times \vec{\mathbf c} \right ) =\left ( a_1\hat i+a_2\hat j+a_3\hat k \right )\cdot\begin{vmatrix} \hat i & \hat j & \hat k\\ b_1 &b_2 &b_2 \\ c_1 &c_2 &c_3 \end{vmatrix}\\\\\mathrm{\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;}=\left|\begin{array}{lll}{a_{1}} & {a_{2}} & {a_{3}} \\ {b_{1}} & {b_{2}} & {b_{3}} \\ {c_{1}} & {c_{2}} & {c_{3}}\end{array}\right|
 

NOTE :
\\1.\;\;\left [ \mathit{m} \vec{a} \;\;\vec{b}\;\; \vec{c} \right ]=m\left [ \vec{a} \;\;\vec{b}\;\; \vec{c} \right ],\;\text{ where }m\text{ is a scalar.}.\\\\2.\;\;\left [ \mathit{m_1} \vec{a} \;\;\mathit{m_2}\vec{b}\;\; \mathit{m_3}\vec{c} \right ]=\mathit{m_1m_2m_3}\left [ \vec{a} \;\;\vec{b}\;\; \vec{c} \right ],\;\text{where }m_1,m_2,m_3 \;\text{ are scalares.}\\\\3.\;\;\left [ \vec{a}+\vec{b} \;\;\;\vec{c}\;\; \;\vec{d} \right ]=\left [ \vec{a} \;\;\vec{c}\;\; \vec{d} \right ]+\left [ \vec{b} \;\;\vec{c}\;\; \vec{d} \right ]

The necessary and sufficient condition for three non-zero, non-collinear vectors \vec{a},\;\vec{b} and \vec{c} is coplanar is that \left [ \vec{a}\;\;\vec{b} \;\;\;\vec {c}\right ]=0.

Geometrical Interpretation of Scalar Triple Product

Let vectors \vec {\mathbf a},\;\;\vec {\mathbf b} and \vec {\mathbf c} represent the sides of a parallelepiped OA, OB and OC respectively. Then, \vec {\mathbf b}\times \vec {\mathbf c} is a vector perpendicular to the plane of \vec {\mathbf b} and \vec {\mathbf c}. Let Ө be the angle between vectors \vec{\mathbf b} and \vec {\mathbf c} and α be the angle between \vec {\mathbf a} and \vec {\mathbf b}\times\vec {\mathbf c}.

If \hat {\mathbf n} is a unit vector along \vec {\mathbf b}\times\vec {\mathbf c}, then α is the angle between \hat {\mathbf n} and \vec {\mathbf a}.

\\\left [ \vec{\mathbf a}\;\;\vec{\mathbf b}\;\;\vec{\mathbf c} \right ]= \vec{\mathbf a}\cdot \left ( \vec{\mathbf b}\times \vec{\mathbf c} \right )\\\mathrm{\;\;\;\;\;\;\;\;\;\;\;\;\;\;}=\vec{\mathbf a} \cdot(\mathbf {b} \mathbf {c} \sin \theta\; \hat{\mathbf n})\\\mathrm{\;\;\;\;\;\;\;\;\;\;\;\;\;\;}=(\mathbf {b} \mathbf {c} \sin \theta)(\vec{\mathbf a} \cdot \hat{\mathbf n})\\\mathrm{\;\;\;\;\;\;\;\;\;\;\;\;\;\;}=(\mathbf {b} \mathbf {c} \sin \theta)({\mathbf a} \cdot {\mathbf 1}\cdot \cos \alpha)\\\mathrm{\;\;\;\;\;\;\;\;\;\;\;\;\;\;}=({\mathbf a} \cdot \cos \alpha)(\mathbf {b} \mathbf {c} \sin \theta)\\\mathrm{\;\;\;\;\;\;\;\;\;\;\;\;\;\;}=(\text{Height} )\cdot \text{(Area of Base)}\\\mathrm{\;\;\;\;\;\;\;\;\;\;\;\;\;\;}=\text{Volume of parallelepiped}

 

Volume of Tetrahedron

Tetrahedron is a pyramid having a triangular base. Therefore


\\\therefore \;\;\;\;\;\; \text{Volume}=\frac{1}{6} [ \vec{a} \,\,\,\;\vec{b}\;\,\,\, \vec{c} ]

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Get Answer to all your questions

Back to top