JEE Mains 2026 Eligibility Marks in 12th Subject Wise Explained Here

Product of two Binomial Coefficients - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • 44 Questions around this concept.

Solve by difficulty

The value of r for which $^{20}C_r^{20}C_0+^{20}C_{r-1}\:^{20}C_1+^{20}C_{r-2}\:^{20}C_2+\ldots\ldots\ldots+^{20}C_0\:^{20}C_r$ is the maximum, is:

The sum of the series $\binom{10}{0}\binom{10}{4}+\binom{10}{1}\binom{10}{5}+\binom{10}{2}\binom{10}{6}+\ldots+\binom{10}{6}\binom{10}{10}$ is

\sum_{k=0}^{20}\left({ }^{20} \mathrm{C}_{\mathrm{k}}\right)^{2} is equal to :

If (1+x)^{n}=C_{0}+C_{1} x \ldots\ldots +C_{n} x^{n} then, C_{0} \cdot^{2 n} C_{n}-C_{1} \cdot^{2 n-2} C_{n}+C_{2} \cdot^{2 n-4} C_{n}-\ldots

is equal to?

The term independent of x in the expansion of  (1+x)^n(1+1 / x)^nis

 

The term independent of x in the expansion of (1+x)^n\left(1+\frac{1}{x}\right)^nis

\text { If }(1+x)^n=C_0+C_1 x+C_2 x^2+\ldots \ldots \ldots+C_n x^2 \text {, then } C_0^2+C_1^2+C_2^2+C_3^2+\ldots \ldots+C_n^2=

GNA University B.Tech Admissions 2025

100% Placement Assistance | Avail Merit Scholarships | Highest CTC 43 LPA

UPES B.Tech Admissions 2025

Ranked #42 among Engineering colleges in India by NIRF | Highest Package 1.3 CR , 100% Placements | Last Date to Apply: 31st August | Admissions Closing Soon

$^{13}c_2^2+ ^{13}c_1^2+ ^{13}c_2^2 + ...+ ^{13}c_{13}^2 =$

$^{8}c_{0} \times ^{9}c_{8} + ^{8}c_{1} \times ^{9}c_{7} + ^{8}c_{2} \times ^{9}c_{6} + ^{8}c_{3} \times ^{9}c_{5} +^{8}c_{4} \times ^{9}c_{4} + ^{8}c_{5} \times ^{9}c_{3} + ^{8}c_{6} \times ^{9}c_{2} + ^{8}c_{7} \times ^{9}c_{1} + ^{8}c_{8} \times ^{9}c_{0}$

JEE Main 2026: Preparation Tips & Study Plan
Download the JEE Main 2026 Preparation Tips PDF to boost your exam strategy. Get expert insights on managing study material, focusing on key topics and high-weightage chapters.
Download EBook

If $\left(1-x^3\right)=\sum_{r=0}^{\infty} a_r x^r(1-x)^{3 m-2 r}$ then find $a_r$, when $n \in N$

Concepts Covered - 2

Product of two Binomial Coefficients (Part 1)

Series Involving Product of two Binomial Coefficients

Example

$
\begin{aligned}
& C_0^2+C_1^2+C_2^2+\ldots C_n^2={ }^{2 n} C_n \quad \text { or } \quad \sum_{r=0}^n C_r^2={ }^{2 n} C_n \\
& \sum_{r=0}^n C_r^2=C_0^2+C_1^2+C_2^2+C_3^2+\ldots C_n^2 \\
& \quad=C_0 \cdot C_0+C_1 \cdot C_1+C_2 \cdot C_2+C_3 \cdot C_3+\ldots+C_n \cdot C_n \\
& =C_0 \cdot C_n+C_1 \cdot C_{n-1}+C_2 \cdot C_{n-2}+C_3 \cdot C_{n-3}+\ldots+C_n \cdot C_0 \\
& \left(U \operatorname{sing}{ }^n C_r={ }^n C_{n-r}\right)
\end{aligned}
$
Here, the sum of lower suffixes in each term is constant
Consider the identities

$
\begin{aligned}
& (1+x)^n=C_0+C_1 x+C_2 x^2+C_3 x^3+\ldots+C_n x^n \\
& (1+x)^n=C_0+C_1 x+C_2 x^2+C_3 x^3 \ldots+C_n \cdot x^n
\end{aligned}
$
Multiply these identities we get another identity.

$
\begin{aligned}
& (1+x)^n(1+x)^n=\left(C_0+C_1 x+C_2 x^2+\ldots \ldots \ldots+C_n x^n\right) \times\left(C_0+C_1 x+C_2 x^2+\ldots \ldots \ldots+C_n x^n\right) \\
& (1+x)^{2 n}=\left(C_0+C_1 x+C_2 x^2+\ldots \ldots \ldots+C_n x^n\right) \times\left(C_0+C_1 x+C_2 x^2+\ldots \ldots \ldots+C_n x^n\right)
\end{aligned}
$
Compare coefficients of $x^n$ on both sides.
In LHS, coeff. of $x^n=$ coeff. of $x^n$ in $(1+x)^{2 n}={ }^{2 n} C_n$
In RHS. terms containing $x^n$ are

$
C_0 C_n x^n+C_1 C_{n-1} x^n+C_2 C_{n-2} x^n+\ldots \ldots \ldots+C_n C_0 x^n
$

$\Rightarrow \quad$ Coeff. of $x^n$ on RHS $=C_0 C_n+C_1 C_{n-1}+C_2 C_{n-2}+\ldots \ldots \ldots+C_n C_0$

Equating the coefficients,

$
C_0 C_n+C_1 C_{n-1}+C_2 C_{n-2}+\ldots \ldots \ldots+C_n C_0=C_0^2+C_1^2+C_2^2+\ldots \ldots \ldots C_n^2={ }^{2 n} C_n
$
Shortcut formula
To get the value of $C_0 C_{n-r}+C_1 C_{n-r+1}+C_2 C_{n-r+2}+\ldots \ldots \ldots .+C_{n-r} C_0$
Observe that upper indices are constant in each term and the sum of lower indices $=$ constant $=(\mathrm{n}-\mathrm{r})$
So this expression equals Sum of upper indices $C_{\text {sum of lower indices }}$

So the given expression equals ${ }^{n+n} C_{n-r}={ }^{2 n} C_{n-r}$

Product of two Binomial Coefficients (Part 2)

If the difference of lower suffixes of binomial coefficients in each term is the same

Example

Prove that $C_0 C_1+C_1 C_2+C_2 C_3+\ldots \ldots \ldots+C_{n-1} C_n={ }^{2 n} C_{n-1}$
Here the difference between lower indices is constant in each term
We can convert it to a form where the sum of the lower indices in each term is the same, then apply the shortcut formula that we learnt in the previous concept

$
C_0 C_1+C_1 C_2+C_2 C_3+\ldots \ldots \ldots+C_{n-1} C_n
$
Using the relation ${ }^n C_r={ }^n C_{n-r}$ in second coefficients of each term

$
=C_0 C_{n-1}+C_1 C_{n-2}+C_2 C_{n-3}+\ldots \ldots \ldots+C_{n-1} C_0
$
Now observe that the sum of lower indices is constant, so we can apply the shortcut formula that we learnt in the previous concept

$
\begin{aligned}
& ={ }^{n+n} C_{n-1} \\
& ={ }^{2 n} C_{n-1}
\end{aligned}
$

Study it with Videos

Product of two Binomial Coefficients (Part 1)
Product of two Binomial Coefficients (Part 2)

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Get Answer to all your questions