GNA University B.Tech Admissions 2025
100% Placement Assistance | Avail Merit Scholarships | Highest CTC 43 LPA
44 Questions around this concept.
The value of r for which $^{20}C_r^{20}C_0+^{20}C_{r-1}\:^{20}C_1+^{20}C_{r-2}\:^{20}C_2+\ldots\ldots\ldots+^{20}C_0\:^{20}C_r$ is the maximum, is:
The sum of the series $\binom{10}{0}\binom{10}{4}+\binom{10}{1}\binom{10}{5}+\binom{10}{2}\binom{10}{6}+\ldots+\binom{10}{6}\binom{10}{10}$ is
is equal to :
JEE Main 2026: Preparation Tips & Study Plan | Previous 10 Year Questions
JEE Main 2026: 100 Days Study Plan | High Scoring Chapters and Topics | Preparation Tips
JEE Main 2025 Most Scoring Concept: January Session | April Session
Don't Miss: Best Public Engineering Colleges
If then,
is equal to?
The term independent of x in the expansion of is
The term independent of x in the expansion of is
100% Placement Assistance | Avail Merit Scholarships | Highest CTC 43 LPA
Ranked #42 among Engineering colleges in India by NIRF | Highest Package 1.3 CR , 100% Placements | Last Date to Apply: 31st August | Admissions Closing Soon
$^{13}c_2^2+ ^{13}c_1^2+ ^{13}c_2^2 + ...+ ^{13}c_{13}^2 =$
$^{8}c_{0} \times ^{9}c_{8} + ^{8}c_{1} \times ^{9}c_{7} + ^{8}c_{2} \times ^{9}c_{6} + ^{8}c_{3} \times ^{9}c_{5} +^{8}c_{4} \times ^{9}c_{4} + ^{8}c_{5} \times ^{9}c_{3} + ^{8}c_{6} \times ^{9}c_{2} + ^{8}c_{7} \times ^{9}c_{1} + ^{8}c_{8} \times ^{9}c_{0}$
If $\left(1-x^3\right)=\sum_{r=0}^{\infty} a_r x^r(1-x)^{3 m-2 r}$ then find $a_r$, when $n \in N$
Series Involving Product of two Binomial Coefficients
Example
$
\begin{aligned}
& C_0^2+C_1^2+C_2^2+\ldots C_n^2={ }^{2 n} C_n \quad \text { or } \quad \sum_{r=0}^n C_r^2={ }^{2 n} C_n \\
& \sum_{r=0}^n C_r^2=C_0^2+C_1^2+C_2^2+C_3^2+\ldots C_n^2 \\
& \quad=C_0 \cdot C_0+C_1 \cdot C_1+C_2 \cdot C_2+C_3 \cdot C_3+\ldots+C_n \cdot C_n \\
& =C_0 \cdot C_n+C_1 \cdot C_{n-1}+C_2 \cdot C_{n-2}+C_3 \cdot C_{n-3}+\ldots+C_n \cdot C_0 \\
& \left(U \operatorname{sing}{ }^n C_r={ }^n C_{n-r}\right)
\end{aligned}
$
Here, the sum of lower suffixes in each term is constant
Consider the identities
$
\begin{aligned}
& (1+x)^n=C_0+C_1 x+C_2 x^2+C_3 x^3+\ldots+C_n x^n \\
& (1+x)^n=C_0+C_1 x+C_2 x^2+C_3 x^3 \ldots+C_n \cdot x^n
\end{aligned}
$
Multiply these identities we get another identity.
$
\begin{aligned}
& (1+x)^n(1+x)^n=\left(C_0+C_1 x+C_2 x^2+\ldots \ldots \ldots+C_n x^n\right) \times\left(C_0+C_1 x+C_2 x^2+\ldots \ldots \ldots+C_n x^n\right) \\
& (1+x)^{2 n}=\left(C_0+C_1 x+C_2 x^2+\ldots \ldots \ldots+C_n x^n\right) \times\left(C_0+C_1 x+C_2 x^2+\ldots \ldots \ldots+C_n x^n\right)
\end{aligned}
$
Compare coefficients of $x^n$ on both sides.
In LHS, coeff. of $x^n=$ coeff. of $x^n$ in $(1+x)^{2 n}={ }^{2 n} C_n$
In RHS. terms containing $x^n$ are
$
C_0 C_n x^n+C_1 C_{n-1} x^n+C_2 C_{n-2} x^n+\ldots \ldots \ldots+C_n C_0 x^n
$
$\Rightarrow \quad$ Coeff. of $x^n$ on RHS $=C_0 C_n+C_1 C_{n-1}+C_2 C_{n-2}+\ldots \ldots \ldots+C_n C_0$
Equating the coefficients,
$
C_0 C_n+C_1 C_{n-1}+C_2 C_{n-2}+\ldots \ldots \ldots+C_n C_0=C_0^2+C_1^2+C_2^2+\ldots \ldots \ldots C_n^2={ }^{2 n} C_n
$
Shortcut formula
To get the value of $C_0 C_{n-r}+C_1 C_{n-r+1}+C_2 C_{n-r+2}+\ldots \ldots \ldots .+C_{n-r} C_0$
Observe that upper indices are constant in each term and the sum of lower indices $=$ constant $=(\mathrm{n}-\mathrm{r})$
So this expression equals Sum of upper indices $C_{\text {sum of lower indices }}$
So the given expression equals ${ }^{n+n} C_{n-r}={ }^{2 n} C_{n-r}$
If the difference of lower suffixes of binomial coefficients in each term is the same
Example
Prove that $C_0 C_1+C_1 C_2+C_2 C_3+\ldots \ldots \ldots+C_{n-1} C_n={ }^{2 n} C_{n-1}$
Here the difference between lower indices is constant in each term
We can convert it to a form where the sum of the lower indices in each term is the same, then apply the shortcut formula that we learnt in the previous concept
$
C_0 C_1+C_1 C_2+C_2 C_3+\ldots \ldots \ldots+C_{n-1} C_n
$
Using the relation ${ }^n C_r={ }^n C_{n-r}$ in second coefficients of each term
$
=C_0 C_{n-1}+C_1 C_{n-2}+C_2 C_{n-3}+\ldots \ldots \ldots+C_{n-1} C_0
$
Now observe that the sum of lower indices is constant, so we can apply the shortcut formula that we learnt in the previous concept
$
\begin{aligned}
& ={ }^{n+n} C_{n-1} \\
& ={ }^{2 n} C_{n-1}
\end{aligned}
$
"Stay in the loop. Receive exam news, study resources, and expert advice!"