Amity University-Noida B.Tech Admissions 2026
Among top 100 Universities Globally in the Times Higher Education (THE) Interdisciplinary Science Rankings 2026
Iota and powers of Iota is considered one of the most asked concept.
17 Questions around this concept.
If $\left(\frac{1+i}{1-i}\right)^x=1$, then
Match the column
(I)
(i) $i^{49}$
(ii) $i^{2043}$
(iii) $i^{574}$
(iv) $i^{-240}$
and
(II)
$
\begin{aligned}
& (p) 1 \\
& (q) i \\
& (r)-1 \\
& (s)-i
\end{aligned}
$
One root of $(1)^{\frac{1}{3}}$ is:
Latest: Free All-India JEE Main 2026 Mock Test - Attempt Now
JEE Main Sample Papers: Physics | Chemistry | Maths | Top 30 Repeated Questions
JEE Main QP & Mock: Previous 10 Year Questions | Chapter Wise PYQs | Mock test Series
JEE Main Most Scoring Concept: January 2025 Session | April 2025 Session | Overall
Find the value of $\frac{(1+i)^n}{(1-i)^{n-2}}$
One of the values of $i^{-i}$ is, where $i=\sqrt{-1}$
The value of $\sqrt{-2}\cdot \sqrt{-8}$ is
The value of $\sqrt{-9}$ is
The square of any real number, whether it is positive or negative or zero is always non-negative, i.e. $x^2 \geq 0$ for all $x \in R$.
Hence, the equation $x^2+1=0$ is not satisfied for any real value of $x$ or not solvable in real number system..
Thus, the equation $x^2+1=0$ has an imaginary solution. 'Eular' was the first mathematician to introduce the symbol $i$ (read as 'iota'). The imaginary number i is defined as the square root of -1 .
$
\begin{aligned}
& \mathrm{x}^2+1=0 \\
& \Rightarrow \quad \mathrm{x}^2=-1 \\
& \text { or, } \mathrm{x}= \pm \sqrt{-1}= \pm i
\end{aligned}
$
Equation, $\mathrm{x}^2+1=0$ has two solution, $\mathrm{x}=i$ and $\mathrm{x}=-i$.
$
\begin{aligned}
\sqrt{-1} & =\mathrm{i} \\
1^2 & =(\sqrt{-1})^2=-1
\end{aligned}
$
We can write the square root of any negative number as a multiple of i. Consider the square root of -25
$
\begin{aligned}
\sqrt{-25} & =\sqrt{25(-1)} \\
& =\sqrt{25} \sqrt{-1} \\
& =5 \mathrm{i}
\end{aligned}
$
Integral Powers of iota (i)
(1) If the power of iota is the whole number
$
\begin{aligned}
& \mathrm{i}^0=1, \quad \mathrm{i}^1=\mathrm{i}, \quad \mathrm{i}^2=(\sqrt{-1})^2=-1 \\
& \mathrm{i}^3=\mathrm{i} \cdot \mathrm{i}^2=\mathrm{i} \times-1=-\mathrm{i} \\
& \mathrm{i}^4=\mathrm{i}^2 \cdot \mathrm{i}^2=-1 \times-1=1 \\
& \mathrm{i}^5=\mathrm{i} \cdot \mathrm{i}^4=\mathrm{i} \times 1=\mathrm{i}
\end{aligned}
$
In general,
$
\mathrm{i}^{4 \mathrm{n}}=1, \quad \mathrm{i}^{4 \mathrm{n}+1}=\mathrm{i}, \quad \mathrm{i}^{4 \mathrm{n}+2}=-1, \quad \mathrm{i}^{4 \mathrm{n}+3}=-1
$
(2) If the power of iota is the negative integer
$
\begin{aligned}
i^{-1} & =\frac{1}{i}=\frac{i}{i^2}=\frac{i}{-1}=-i \\
i^{-2} & =\frac{1}{i^2}=-1 \\
i^{-3} & =\frac{1}{i^3}=\frac{i}{i^4}=i \\
i^{-4} & =\frac{1}{i^4}=\frac{1}{1}=1
\end{aligned}
$
The sum of four consecutive powers of iota (i) is zero
$\mathrm{n} \in \mathbb{I}$ and $\mathrm{i}=\sqrt{-1}$, then
$
\begin{aligned}
i^{\mathrm{n}}+i^{\mathrm{n}+1}+i^{\mathrm{n}+2}+i^{\mathrm{n}+3} & =i^{\mathrm{n}}\left(1+i+i^2+i^3\right) \\
& =i(1+i-1-i)=0
\end{aligned}
$
"Stay in the loop. Receive exam news, study resources, and expert advice!"
