Amity University Noida B.Tech Admissions 2025
ApplyAmong Top 30 National Universities for Engineering (NIRF 2024)
Iota and powers of Iota is considered one of the most asked concept.
12 Questions around this concept.
If $\left(\frac{1+i}{1-i}\right)^x=1$, then
Match the column
(I)
(i) $i^{49}$
(ii) $i^{2043}$
(iii) $i^{574}$
(iv) $i^{-240}$
and
(II)
$
\begin{aligned}
& (p) 1 \\
& (q) i \\
& (r)-1 \\
& (s)-i
\end{aligned}
$
One root of $(1)^{\frac{1}{3}}$ is:
New: JEE Main 2025 Admit Card OUT; Download Now
JEE Main 2025: Sample Papers | Syllabus | Mock Tests | PYQs | Video Lectures
JEE Main 2025: Preparation Guide | High Scoring Topics | Free Crash Course
The square of any real number, whether it is positive or negative or zero is always non-negative, i.e. $x^2 \geq 0$ for all $x \in R$.
Hence, the equation $x^2+1=0$ is not satisfied for any real value of $x$ or not solvable in real number system..
Thus, the equation $x^2+1=0$ has an imaginary solution. 'Eular' was the first mathematician to introduce the symbol $i$ (read as 'iota'). The imaginary number i is defined as the square root of -1 .
$
\begin{aligned}
& \mathrm{x}^2+1=0 \\
& \Rightarrow \quad \mathrm{x}^2=-1 \\
& \text { or, } \mathrm{x}= \pm \sqrt{-1}= \pm i
\end{aligned}
$
Equation, $\mathrm{x}^2+1=0$ has two solution, $\mathrm{x}=i$ and $\mathrm{x}=-i$.
$
\begin{aligned}
\sqrt{-1} & =\mathrm{i} \\
1^2 & =(\sqrt{-1})^2=-1
\end{aligned}
$
We can write the square root of any negative number as a multiple of i. Consider the square root of -25
$
\begin{aligned}
\sqrt{-25} & =\sqrt{25(-1)} \\
& =\sqrt{25} \sqrt{-1} \\
& =5 \mathrm{i}
\end{aligned}
$
Integral Powers of iota (i)
(1) If the power of iota is the whole number
$
\begin{aligned}
& \mathrm{i}^0=1, \quad \mathrm{i}^1=\mathrm{i}, \quad \mathrm{i}^2=(\sqrt{-1})^2=-1 \\
& \mathrm{i}^3=\mathrm{i} \cdot \mathrm{i}^2=\mathrm{i} \times-1=-\mathrm{i} \\
& \mathrm{i}^4=\mathrm{i}^2 \cdot \mathrm{i}^2=-1 \times-1=1 \\
& \mathrm{i}^5=\mathrm{i} \cdot \mathrm{i}^4=\mathrm{i} \times 1=\mathrm{i}
\end{aligned}
$
In general,
$
\mathrm{i}^{4 \mathrm{n}}=1, \quad \mathrm{i}^{4 \mathrm{n}+1}=\mathrm{i}, \quad \mathrm{i}^{4 \mathrm{n}+2}=-1, \quad \mathrm{i}^{4 \mathrm{n}+3}=-1
$
(2) If the power of iota is the negative integer
$
\begin{aligned}
i^{-1} & =\frac{1}{i}=\frac{i}{i^2}=\frac{i}{-1}=-i \\
i^{-2} & =\frac{1}{i^2}=-1 \\
i^{-3} & =\frac{1}{i^3}=\frac{i}{i^4}=i \\
i^{-4} & =\frac{1}{i^4}=\frac{1}{1}=1
\end{aligned}
$
The sum of four consecutive powers of iota (i) is zero
$\mathrm{n} \in \mathbb{I}$ and $\mathrm{i}=\sqrt{-1}$, then
$
\begin{aligned}
i^{\mathrm{n}}+i^{\mathrm{n}+1}+i^{\mathrm{n}+2}+i^{\mathrm{n}+3} & =i^{\mathrm{n}}\left(1+i+i^2+i^3\right) \\
& =i(1+i-1-i)=0
\end{aligned}
$
"Stay in the loop. Receive exam news, study resources, and expert advice!"