NIRF Engineering Ranking 2025 (Out): Complete List of Top Colleges

Conjugates of Complex Numbers - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • Conjugate of complex numbers and their properties is considered one of the most asked concept.

  • 37 Questions around this concept.

Solve by difficulty

A is a square matrix of order 3 such that $a_{i j}=w^{-i+j}, \mathrm{w}$ is cube root of unity. Find matrix $\bar{B}-B$ if $B=A+\bar{A}$

Match the column

$z$
(i) $2+3 i$
(ii) $i$
(iii) 4
(iv) $-1+i$

and

$\bar{z}$

$
(p)-1-i
$

$(q) 4$

$
\begin{aligned}
& (r)-i \\
& (s) 2-3 i
\end{aligned}
$

What is conjugate of product of two complex no's, Whose product of conjugates is non-zero purely imaginary?

$
\text { What is the value of } \overline{(\bar{z})}  \text { if } \bar{z}=3+4 i ?
$

What is $\frac{\overline{z_1}}{\bar{z}_2}, i f\left(\frac{\bar{z}_1}{\bar{z}_2}\right)=3-4 i$

If $\arg (Z)=0$, then $Z-\bar{Z}=$

Concepts Covered - 1

Conjugate of complex numbers and their properties

The conjugate of a complex number $z=a+i b(a, b$ are real numbers) is $a-i b$. It is denoted as $\bar{z}$. i.e. if $z=a+i b$, then its conjugate is $\bar{z}=a-i b$.

The conjugate of complex numbers is obtained by changing the sign of the imaginary part of the complex number. The real part of the number is left unchanged.
Note:
When a complex number is added to its complex conjugate, the result is a real number. i.e. $\mathrm{z}=\mathrm{a}+$ $\mathrm{ib}, \bar{z}=\mathrm{a}-\mathrm{ib}$

Then the sum, $z+\bar{z}=a+i b+a-i b=2 a$ (which is real)
When a complex number is multiplied by its complex conjugate, the result is a real number i.e. $z=$ $\mathrm{a}+\mathrm{ib}, \bar{z}=\mathrm{a}-\mathrm{ib}$

Then the product, $z \cdot \bar{z}=(a+i b) \cdot(a-i b)=a^2-(i b)^2$

$
=a^2+b^2(\text { which is real })
$
Geometrically complex conjugate of a complex number is its mirror image with respect to the real axis (x-axis).

For example

$
\mathrm{z}=2+2 \mathrm{i} \text { and } \bar{z}=2-2 i
$

Properties of the conjugate complex numbers:

z, z1, z2, and z3 be the complex numbers

1. $\overline{(\bar{z})}=z$
2. $\mathrm{z}+\overline{\mathrm{z}}=2 \cdot \operatorname{Re}(\mathrm{z})$
3. $\mathrm{z}-\overline{\mathrm{z}}=2 \mathrm{i} \cdot \operatorname{Im}(\mathrm{z})$
4. $\mathrm{z}+\overline{\mathrm{z}}=0 \Rightarrow \mathrm{z}=-\overline{\mathrm{z}} \Rightarrow \mathrm{z}$ is purely imaginary
$5 . \mathrm{z}-\overline{\mathrm{z}}=0 \Rightarrow \mathrm{z}=\overline{\mathrm{z}} \Rightarrow \mathrm{z}$ is purely real
6. $\overline{z_1 \pm z_2}=\overline{z_1} \pm \overline{z_2}$

In general, $\overline{z_1 \pm z_2 \pm z_3 \pm \ldots \ldots \ldots \pm \mathrm{z}_n}=\overline{z_1} \pm \overline{z_2} \pm \overline{z_3} \pm \ldots \ldots \ldots \pm \overline{z_n}$
7. $\overline{\mathrm{z}_1 \cdot \mathrm{Z}_2}=\overline{\mathrm{z}_1} \cdot \overline{\mathrm{z}_2}$

In general, $\overline{z_1 \cdot z_2 \cdot z_3 \cdot \ldots \ldots \ldots \cdot \cdot} \overline{z_n}=\overline{z_1} \cdot \overline{z_2} \cdot \overline{z_3} \cdot \ldots \ldots \ldots \cdot \overline{z_n}$
8. $\overline{\left(\frac{z_1}{z_2}\right)}=\frac{\overline{z_1}}{\overline{z_2}}, \quad z_2 \neq 0$
9. $\overline{\mathrm{z}^{\mathrm{n}}}=(\overline{\mathrm{z}})^{\mathrm{n}}$
10. $\mathrm{z}_1 \cdot \overline{\mathrm{z}_2}+\overline{\mathrm{z}_1} \cdot \mathrm{z}_2=2 \operatorname{Re}\left(\mathrm{z}_1 \cdot \overline{\mathrm{z}_2}\right)=2 \operatorname{Re}\left(\overline{\mathrm{z}_1} \cdot \mathrm{z}_2\right)$

Study it with Videos

Conjugate of complex numbers and their properties

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Get Answer to all your questions