Amity University Noida B.Tech Admissions 2025
ApplyAmong Top 30 National Universities for Engineering (NIRF 2024)
Conjugate of complex numbers and their properties is considered one of the most asked concept.
31 Questions around this concept.
A is a square matrix of order 3 such that $a_{i j}=w^{-i+j}, \mathrm{w}$ is cube root of unity. Find matrix $\bar{B}-B$ if $B=A+\bar{A}$
Match the column
$z$
(i) $2+3 i$
(ii) $i$
(iii) 4
(iv) $-1+i$
and
$\bar{z}$
$
(p)-1-i
$
$(q) 4$
$
\begin{aligned}
& (r)-i \\
& (s) 2-3 i
\end{aligned}
$
What is conjugate of product of two complex no's, Whose product of conjugates is non-zero purely imaginary?
New: JEE Main 2025 Admit Card OUT; Download Now
JEE Main 2025: Sample Papers | Syllabus | Mock Tests | PYQs | Video Lectures
JEE Main 2025: Preparation Guide | High Scoring Topics | Free Crash Course
$
\text { What is the value of } \overline{(\bar{z})} \text { if } \bar{z}=3+4 i ?
$
The conjugate of a complex number $z=a+i b(a, b$ are real numbers) is $a-i b$. It is denoted as $\bar{z}$. i.e. if $z=a+i b$, then its conjugate is $\bar{z}=a-i b$.
The conjugate of complex numbers is obtained by changing the sign of the imaginary part of the complex number. The real part of the number is left unchanged.
Note:
When a complex number is added to its complex conjugate, the result is a real number. i.e. $\mathrm{z}=\mathrm{a}+$ $\mathrm{ib}, \bar{z}=\mathrm{a}-\mathrm{ib}$
Then the sum, $z+\bar{z}=a+i b+a-i b=2 a$ (which is real)
When a complex number is multiplied by its complex conjugate, the result is a real number i.e. $z=$ $\mathrm{a}+\mathrm{ib}, \bar{z}=\mathrm{a}-\mathrm{ib}$
Then the product, $z \cdot \bar{z}=(a+i b) \cdot(a-i b)=a^2-(i b)^2$
$
=a^2+b^2(\text { which is real })
$
Geometrically complex conjugate of a complex number is its mirror image with respect to the real axis (x-axis).
For example
$
\mathrm{z}=2+2 \mathrm{i} \text { and } \bar{z}=2-2 i
$
Properties of the conjugate complex numbers:
z, z1, z2, and z3 be the complex numbers
1. $\overline{(\bar{z})}=z$
2. $\mathrm{z}+\overline{\mathrm{z}}=2 \cdot \operatorname{Re}(\mathrm{z})$
3. $\mathrm{z}-\overline{\mathrm{z}}=2 \mathrm{i} \cdot \operatorname{Im}(\mathrm{z})$
4. $\mathrm{z}+\overline{\mathrm{z}}=0 \Rightarrow \mathrm{z}=-\overline{\mathrm{z}} \Rightarrow \mathrm{z}$ is purely imaginary
$5 . \mathrm{z}-\overline{\mathrm{z}}=0 \Rightarrow \mathrm{z}=\overline{\mathrm{z}} \Rightarrow \mathrm{z}$ is purely real
6. $\overline{z_1 \pm z_2}=\overline{z_1} \pm \overline{z_2}$
In general, $\overline{z_1 \pm z_2 \pm z_3 \pm \ldots \ldots \ldots \pm \mathrm{z}_n}=\overline{z_1} \pm \overline{z_2} \pm \overline{z_3} \pm \ldots \ldots \ldots \pm \overline{z_n}$
7. $\overline{\mathrm{z}_1 \cdot \mathrm{Z}_2}=\overline{\mathrm{z}_1} \cdot \overline{\mathrm{z}_2}$
In general, $\overline{z_1 \cdot z_2 \cdot z_3 \cdot \ldots \ldots \ldots \cdot \cdot} \overline{z_n}=\overline{z_1} \cdot \overline{z_2} \cdot \overline{z_3} \cdot \ldots \ldots \ldots \cdot \overline{z_n}$
8. $\overline{\left(\frac{z_1}{z_2}\right)}=\frac{\overline{z_1}}{\overline{z_2}}, \quad z_2 \neq 0$
9. $\overline{\mathrm{z}^{\mathrm{n}}}=(\overline{\mathrm{z}})^{\mathrm{n}}$
10. $\mathrm{z}_1 \cdot \overline{\mathrm{z}_2}+\overline{\mathrm{z}_1} \cdot \mathrm{z}_2=2 \operatorname{Re}\left(\mathrm{z}_1 \cdot \overline{\mathrm{z}_2}\right)=2 \operatorname{Re}\left(\overline{\mathrm{z}_1} \cdot \mathrm{z}_2\right)$
"Stay in the loop. Receive exam news, study resources, and expert advice!"