Careers360 Logo
JEE Main 2025 April 7 Exam Analysis for Shift 1 and 2 - Check Experts Review after Exam

Conjugates of Complex Numbers - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • Conjugate of complex numbers and their properties is considered one of the most asked concept.

  • 37 Questions around this concept.

Solve by difficulty

A is a square matrix of order 3 such that aij=wi+j,w is cube root of unity. Find matrix B¯B if B=A+A¯

Match the column

z
(i) 2+3i
(ii) i
(iii) 4
(iv) 1+i

and

z¯

(p)1i

(q)4

(r)i(s)23i

What is conjugate of product of two complex no's, Whose product of conjugates is non-zero purely imaginary?

 What is the value of (z¯) if z¯=3+4i?

What is z1z¯2,if(z¯1z¯2)=34i

If arg(Z)=0, then ZZ¯=

Concepts Covered - 1

Conjugate of complex numbers and their properties

The conjugate of a complex number z=a+ib(a,b are real numbers) is aib. It is denoted as z¯. i.e. if z=a+ib, then its conjugate is z¯=aib.

The conjugate of complex numbers is obtained by changing the sign of the imaginary part of the complex number. The real part of the number is left unchanged.
Note:
When a complex number is added to its complex conjugate, the result is a real number. i.e. z=a+ ib,z¯=aib

Then the sum, z+z¯=a+ib+aib=2a (which is real)
When a complex number is multiplied by its complex conjugate, the result is a real number i.e. z= a+ib,z¯=aib

Then the product, zz¯=(a+ib)(aib)=a2(ib)2

=a2+b2( which is real )
Geometrically complex conjugate of a complex number is its mirror image with respect to the real axis (x-axis).

For example

z=2+2i and z¯=22i

Properties of the conjugate complex numbers:

z, z1, z2, and z3 be the complex numbers

1. (z¯)=z
2. z+z=2Re(z)
3. zz=2iIm(z)
4. z+z=0z=zz is purely imaginary
5.zz=0z=zz is purely real
6. z1±z2=z1±z2

In general, z1±z2±z3±±zn=z1±z2±z3±±zn
7. z1Z2=z1z2

In general, z1z2z3zn=z1z2z3zn
8. (z1z2)=z1z2,z20
9. zn=(z)n
10. z1z2+z1z2=2Re(z1z2)=2Re(z1z2)

Study it with Videos

Conjugate of complex numbers and their properties

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Get Answer to all your questions

Back to top