IIIT Sonepat JEE Main Cutoff 2025 - Previous Year JEE Mains Cut off for IIIT Sonepat

Conjugates of Complex Numbers - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • Conjugate of complex numbers and their properties is considered one of the most asked concept.

  • 18 Questions around this concept.

Solve by difficulty

Let a \neq b be two-zero real numbers. Then the number of elements in the set X=\left\{z \in \mathbb{C}: \operatorname{Re}\left(a z^2+b z\right)=\mathrm{a}\right. and \mathrm{\left.\operatorname{Re}\left(b z^2+\mathrm{az}\right)=\mathrm{b}\right\}} is equal to :

 

Concepts Covered - 1

Conjugate of complex numbers and their properties

The conjugate of a complex number $z=a+i b(a, b$ are real numbers) is $a-i b$. It is denoted as $\bar{z}$. i.e. if $z=a+i b$, then its conjugate is $\bar{z}=a-i b$.

The conjugate of complex numbers is obtained by changing the sign of the imaginary part of the complex number. The real part of the number is left unchanged.
Note:
When a complex number is added to its complex conjugate, the result is a real number. i.e. $\mathrm{z}=\mathrm{a}+$ $\mathrm{ib}, \bar{z}=\mathrm{a}-\mathrm{ib}$

Then the sum, $z+\bar{z}=a+i b+a-i b=2 a$ (which is real)
When a complex number is multiplied by its complex conjugate, the result is a real number i.e. $z=$ $\mathrm{a}+\mathrm{ib}, \bar{z}=\mathrm{a}-\mathrm{ib}$

Then the product, $z \cdot \bar{z}=(a+i b) \cdot(a-i b)=a^2-(i b)^2$

$
=a^2+b^2(\text { which is real })
$
Geometrically complex conjugate of a complex number is its mirror image with respect to the real axis (x-axis).

For example

$
\mathrm{z}=2+2 \mathrm{i} \text { and } \bar{z}=2-2 i
$

Properties of the conjugate complex numbers:

z, z1, z2, and z3 be the complex numbers

1. $\overline{(\bar{z})}=z$
2. $\mathrm{z}+\overline{\mathrm{z}}=2 \cdot \operatorname{Re}(\mathrm{z})$
3. $\mathrm{z}-\overline{\mathrm{z}}=2 \mathrm{i} \cdot \operatorname{Im}(\mathrm{z})$
4. $\mathrm{z}+\overline{\mathrm{z}}=0 \Rightarrow \mathrm{z}=-\overline{\mathrm{z}} \Rightarrow \mathrm{z}$ is purely imaginary
$5 . \mathrm{z}-\overline{\mathrm{z}}=0 \Rightarrow \mathrm{z}=\overline{\mathrm{z}} \Rightarrow \mathrm{z}$ is purely real
6. $\overline{z_1 \pm z_2}=\overline{z_1} \pm \overline{z_2}$

In general, $\overline{z_1 \pm z_2 \pm z_3 \pm \ldots \ldots \ldots \pm \mathrm{z}_n}=\overline{z_1} \pm \overline{z_2} \pm \overline{z_3} \pm \ldots \ldots \ldots \pm \overline{z_n}$
7. $\overline{\mathrm{z}_1 \cdot \mathrm{Z}_2}=\overline{\mathrm{z}_1} \cdot \overline{\mathrm{z}_2}$

In general, $\overline{z_1 \cdot z_2 \cdot z_3 \cdot \ldots \ldots \ldots \cdot \cdot} \overline{z_n}=\overline{z_1} \cdot \overline{z_2} \cdot \overline{z_3} \cdot \ldots \ldots \ldots \cdot \overline{z_n}$
8. $\overline{\left(\frac{z_1}{z_2}\right)}=\frac{\overline{z_1}}{\overline{z_2}}, \quad z_2 \neq 0$
9. $\overline{\mathrm{z}^{\mathrm{n}}}=(\overline{\mathrm{z}})^{\mathrm{n}}$
10. $\mathrm{z}_1 \cdot \overline{\mathrm{z}_2}+\overline{\mathrm{z}_1} \cdot \mathrm{z}_2=2 \operatorname{Re}\left(\mathrm{z}_1 \cdot \overline{\mathrm{z}_2}\right)=2 \operatorname{Re}\left(\overline{\mathrm{z}_1} \cdot \mathrm{z}_2\right)$

Study it with Videos

Conjugate of complex numbers and their properties

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Get Answer to all your questions

Back to top