Amity University-Noida B.Tech Admissions 2026
Among top 100 Universities Globally in the Times Higher Education (THE) Interdisciplinary Science Rankings 2026
Modulus of complex number and its Properties is considered one the most difficult concept.
68 Questions around this concept.
If $\mathrm{S}=\{\mathrm{z} \in \mathrm{C}:|\mathrm{z}-\mathrm{i}|=|\mathrm{z}+\mathrm{i}|=|\mathrm{z}-1|\}$, then, $\mathrm{n}(\mathrm{S})$ is :
$z \bar{z}=$
If z is origin, then $\left | z \right |=$
Latest: Free All-India JEE Main 2026 Mock Test - Attempt Now
JEE Main Sample Papers: Physics | Chemistry | Maths | Top 30 Repeated Questions
JEE Main QP & Mock: Previous 10 Year Questions | Chapter Wise PYQs | Mock test Series
JEE Main Most Scoring Concept: January 2025 Session | April 2025 Session | Overall
If $|z|=5 {\text { then }} \operatorname{Re}(z)$ can satisfy
Which value(s) of $\left|Z_1-Z_2\right|$ is/are acceptable, if $\left|Z_1\right|=7$ and $\left|Z_2\right|=41$
The magnitude and amplitude of $\frac{(1+i \sqrt 3 )(2+2i)}{(\sqrt 3 - i)}$ are respectively:
If $\left | z_{1}z_{2} \right |=5\sqrt{10},$
$| z_{1} |=5\sqrt{2}$
then $\left | z_{2}\right |=?$
Modulus and amplitude of the complex number $\small \frac{1-2i}{1-(1+i)^2}$ is
If z = x + iy is a complex number. Then, the modulus of z, denoted by | z |, is the distance of z from the origin in the Argand plane, and it is a non-negative real number equal to $\sqrt{\mathrm{x}^2+\mathrm{y}^2}$.
i.e. |z| =$\sqrt{x^2+y^2}$.
Every complex number can be represented as a point in the argand plane with the x-axis as the real axis and the y-axis as the imaginary axis.
$|z|=\sqrt{x^2+y^2}=r$ (length r from origin to point (x,y))
Properties of Modulus
i) $|z| \geq 0$
ii) $|z|=0$, iff $z=0$ and $|z|>0$, iff $z \neq 0$
iii) $-|z| \leq \operatorname{Re}(z) \leq|z|$ and $-|z| \leq \operatorname{Im}(z) \leq|z|$
iv) $|z|=|\bar{z}|=|-z|=|-\bar{z}|$
v) $z \bar{z}=|z|^2$
vi) $\left|z_1 z_2\right|=\left|z_1\right|\left|z_2\right| . \quad$ Thus, $\left|z^n\right|=|z|^n$
vii) $\left|\frac{z_1}{z_2}\right|=\frac{\left|z_1\right|}{\left|z_2\right|}$
viii) $\left|z_1 \pm z_2\right| \leq\left|z_1\right|+\left|z_2\right|_{\text {(Triangle inequality) this can be generalised for } \mathrm{n} \text { complex numbers. }}$
ix) $\left|z_1 \pm z_2\right| \geq\left|\left|z_1\right|-\left|z_2\right|\right|$
"Stay in the loop. Receive exam news, study resources, and expert advice!"
