Amity University Noida B.Tech Admissions 2025
ApplyAmong Top 30 National Universities for Engineering (NIRF 2024) | 30+ Specializations | AI Powered Learning & State-of-the-Art Facilities
24 Questions around this concept.
If general argument of a complex no is $2n\pi +\frac{4\pi }{3};$ what is the principle argument
The argument of the complex no. $\frac{2+3 i}{3+i+(1+2 i)^2}$ is
Principal value of amplitude of $(1+i)$ is:
JEE Main 2025: Rank Predictor | College Predictor | Marks vs Rank vs Percentile
JEE Main 2025: Sample Papers | Syllabus | Mock Tests | PYQs | High Scoring Topics
Apply to TOP B.Tech/BE Entrance exams: VITEEE | MET | AEEE | BITSAT
Principal value of the argument of $\cos 1200^{o}+i \sin 1200^{o}$ is:
Let $O$ be the origin, the point $A$ be $z_1=\sqrt{3}+2 \sqrt{2 i}$, the point $B\left(z_2\right)$ be such that $\sqrt{3}\left|z_2\right|=\left|z_1\right|$ and $\arg \left(z_2\right)=\arg \left(z_1\right)+\frac{\pi}{6}$. Then
If a complex number z = x + iy is represented by a point P in the Argand plane and OP forms some angle with a positive x-axis, let's denote it with ?, then ? is called the argument of z.
$\begin{aligned} & \tan \theta=\frac{\mathrm{PM}}{\mathrm{OM}} \\ & \tan \theta=\frac{\mathrm{y}}{\mathrm{x}}=\frac{\operatorname{Im}(\mathrm{z})}{\operatorname{Re}(\mathrm{z})} \Rightarrow \theta=\tan ^{-1} \frac{\mathrm{y}}{\mathrm{x}} \\ & \arg (\mathrm{z})=\theta=\tan ^{-1} \frac{\mathrm{y}}{\mathrm{x}}\end{aligned}$
If ? lies between -? < ? ≤ ?, then ? is called the principal argument. The value of the argument differs depending on which quadrant point (x,y) lies.
If it lies in 1st quadrant then it is ? (acute angle)
If the point lies in 2nd quadrant, then $\arg (z)=\theta=\pi-\tan ^{-1} \frac{y}{|x|}$
So it will be an obtuse +ve angle
If the point lies in lies in 3rd quadrant then $\arg (z)=\theta=-\pi+\tan ^{-1} \frac{y}{x}$
It will be an obtuse -ve angle
If the point lies in 4th quadrant then $\arg (z)=\theta=-\tan ^{-1} \frac{|y|}{x}$
It will be a -ve acute angle
Note:
If $\arg (\mathrm{z})=\frac{\pi}{2}$ or $-\frac{\pi}{2}, \mathrm{z}$ is purely imaginary.
If $\arg (\mathrm{z})=0$ or $\pi, \mathrm{z}$ is purely real.
"Stay in the loop. Receive exam news, study resources, and expert advice!"