JEE Main 2025 January 22 Shift 2 Answer Key PDF

Argument of complex number - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • 17 Questions around this concept.

Solve by difficulty

If general argument of a complex no is $2n\pi +\frac{4\pi }{3};$ what is the principle argument

The argument of the complex no. $\frac{2+3 i}{3+i+(1+2 i)^2}$ is

Principal value of amplitude of $(1+i)$ is:

Principal value of the argument of $\cos 1200^{o}+i \sin 1200^{o}$ is:  

Concepts Covered - 1

Argument of complex number

If a complex number z = x + iy is represented by a point P in the Argand plane and OP forms some angle with a positive x-axis, let's denote it with ?, then ? is called the argument of z.

$\begin{aligned} & \tan \theta=\frac{\mathrm{PM}}{\mathrm{OM}} \\ & \tan \theta=\frac{\mathrm{y}}{\mathrm{x}}=\frac{\operatorname{Im}(\mathrm{z})}{\operatorname{Re}(\mathrm{z})} \Rightarrow \theta=\tan ^{-1} \frac{\mathrm{y}}{\mathrm{x}} \\ & \arg (\mathrm{z})=\theta=\tan ^{-1} \frac{\mathrm{y}}{\mathrm{x}}\end{aligned}$

If ? lies between -? < ? ≤ ?, then ? is called the principal argument. The value of the argument differs depending on which quadrant point (x,y) lies.

If it lies in 1st quadrant then it is ? (acute angle)


 

 

If the point lies in 2nd quadrant, then  $\arg (z)=\theta=\pi-\tan ^{-1} \frac{y}{|x|}$ 

So it will be an obtuse +ve angle

If the point lies in lies in 3rd quadrant then  $\arg (z)=\theta=-\pi+\tan ^{-1} \frac{y}{x}$

It will be an obtuse -ve angle

 

If the point lies in 4th quadrant then  $\arg (z)=\theta=-\tan ^{-1} \frac{|y|}{x}$

It will be a -ve acute angle

Note:

If $\arg (\mathrm{z})=\frac{\pi}{2}$ or $-\frac{\pi}{2}, \mathrm{z}$ is purely imaginary.
If $\arg (\mathrm{z})=0$ or $\pi, \mathrm{z}$ is purely real.

Study it with Videos

Argument of complex number

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Get Answer to all your questions

Back to top