Download Careers360 App
Top Engineering Colleges Under AKTU - Government and Private BTech Colleges

Algebraic operation on Complex Numbers - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • 38 Questions around this concept.

Solve by difficulty

$\frac{1-2i}{2+i}+\frac{4-i}{3+2i}=$

The reciprocal of $3+\sqrt7i$ is

What should be added to complex no  $2+3 i$ to get $1-i$

If $a, a^{\prime}, b \ $ and $b^{\prime}$ are real numbers, then, $\left(\frac{a+i b}{a^{\prime}+i b^{\prime}}\right)$ will also be real number if:

 

If $z \times (3+4i)=2+3i,$ then the value of $z$ is:

For what values of a and b, $a-2 i=b+(a-4) i$

The real values of X and Y for which the equation $(x^{4}+2xi)-(3x^{2}+yi)=(3-5i)+(1+2yi)$ is satisfied , are 

GNA University B.Tech Admissions 2025

100% Placement Assistance | Avail Merit Scholarships | Highest CTC 43 LPA

UPES B.Tech Admissions 2025

Ranked #42 among Engineering colleges in India by NIRF | Highest Package 1.3 CR , 100% Placements | Last Date to Apply: 14th August | Admissions Closing Soon

Concepts Covered - 2

Algebraic operation on Complex Numbers

1. Addition of Two Complex Numbers
$z_1=a+i b$ and $z_2=c+i d$ be any two complex numbers. Then, the sum $z_1+z_2$ is defined as

$
z_1+z_2=(a+i b)+(c+i d)=(a+c)+i(b+d)
$
For example, $z_1=(3-4 i)$ and $z_2=(2+5 i)$, then $z_1+z_2$ is

$
(3-4 i)+(2+5 i)=(3+2)+(-4+5) i=5+i
$

2. Difference of Two Complex Numbers
$z_1=a+i b$ and $z_2=c+i d$ be any two complex numbers. Then, the difference $z_1-z_2$ is defined as

$
z_1-z_2=(a+i b)-(c+i d)=(a-c)+i(b-d)
$
For example, $z_1=(-5+7 i)$ and $z_2=(-11+2 i)$, then $z_1-z_2$ is

$
\begin{aligned}
& (-5+7 i)-(-11+2 i)=-5+7 i+11-2 i \\
& =-5+11+7 i-2 i \\
& =(-5+11)+(7-2) i \\
& =6+5 i
\end{aligned}
$

3. Multiplication of Two Complex Numbers
$\mathrm{z}_1=\mathrm{a}+\mathrm{ib}$ and $\mathrm{z}_2=\mathrm{c}+\mathrm{id}$ be any two complex numbers. Then, the multiplication $\mathrm{z}_1 \cdot \mathrm{z}_2$ is defined as

$
\begin{aligned}
& z_1 \cdot z_2=(a+i b) \cdot(c+i d) \\
& =a c+i a d+i b c+i^2 b d \\
& =a c+i(a d+b c)-b d \\
& =(a c-b d)+i(a d+b c)
\end{aligned}
$
For example, $z_1=(4+3 i)$ and $z_2=(2-5 i)$, then $z_1 \cdot z_2$ is

$\begin{aligned} & (4+3 i)(2-5 i)=4(2)-4(5 i)+3 i(2)-(3 i)(5 i) \\ & =8-20 i+6 i-15\left(i^2\right) \\ & =(8+15)+(-20+6) i \\ & =23-14 i\end{aligned}$

4. Division of Two Complex Numbers

z1 = a + ib and z2 = c + id (and z2 is non-zero) be any two complex numbers. Then, the division $\frac{\mathrm{z}_1}{\mathrm{z}_2}$   is defined as 

$\begin{aligned} & \frac{\mathrm{z}_1}{\mathrm{z}_2}=\frac{\mathrm{a}+\mathrm{ib}}{\mathrm{c}+\mathrm{id}} \cdot \frac{\mathrm{c}-\mathrm{id}}{\mathrm{c}-\mathrm{id}} \\ & \text { [multiplying numerator and denominator by } \mathrm{c}-\mathrm{id} \text { where one of } \mathrm{c} \text { and } \mathrm{d} \text { is non }-\mathrm{zero}] \\ & \frac{\mathrm{z}_1}{\mathrm{z}_2}=\frac{\mathrm{ac}-\mathrm{iad}+\mathrm{ibc}-\mathrm{i}^2 \mathrm{bd}}{\mathrm{c}^2-(\mathrm{id})^2}=\frac{\mathrm{ac}+\mathrm{i}(\mathrm{bc}-\mathrm{ad})+\mathrm{bd}}{\mathrm{c}^2-\mathrm{i}^2 \mathrm{~d}^2} \\ & \frac{\mathrm{z}_1}{\mathrm{z}_2}=\frac{\mathrm{ac}+\mathrm{bd}+\mathrm{i}(\mathrm{bc}-\mathrm{ad})}{\mathrm{c}^2+\mathrm{d}^2} \\ & \frac{\mathrm{z}_1}{\mathbf{z}_{\mathbf{2}}}=\frac{\mathbf{a c}+\mathbf{b d}}{\mathbf{c}^{\mathbf{2}}+\mathbf{d}^{\mathbf{2}}+\mathbf{i} \frac{\mathbf{b c}-\mathbf{a d}}{\mathbf{c}^{\mathbf{2}}+\mathbf{d}^{\mathbf{2}}}}\end{aligned}$

Properties of Addition of Complex Numbers

1. Closure law: The sum of two complex numbers is a complex number, i.e. $z_1+z_2$ is a complex number for all complex numbers $z_1$ and $z_2$.
2. Commutative law : for any two complex numbers $z_1$ and $z_2, z_1+z_2=z_2+z_1$
3. Associative law : for any three complex numbers $z_1, z_2$ and $z_3,\left(z_1+z_2\right)+z_3=z_1+$ $\left(z_2+z_3\right)$
4. Additive identity: if the sum of a complex number $z_1$ with another complex number $z_2$ is $z_1$, then $z_2$ is called the additive identity. We have $z+0=z=0+z$, so 0 is the additive identity.
5. Additive inverse: To every complex number $z=a+i b$, we have the complex number -$\mathrm{a}+\mathrm{i}(-\mathrm{b})$ (denoted as -z ), called the additive inverse or negative of $z$. i.e. $z+(-z)=0(-$ $z$ is additive inverse).

Study it with Videos

Algebraic operation on Complex Numbers
Properties of Addition of Complex Numbers

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Get Answer to all your questions

Back to top