Lowest JEE Main Registration this Year? - Students Face Issues in Form Filling, Check Trends

Algebraic operation on Complex Numbers - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • 21 Questions around this concept.

Solve by difficulty

The equation \small Im\left ( \frac{iz -2}{z - i} \right ) + 1 = 0, z\: \epsilon \; C, z \neq i represents a part of a circle having radius equal to :

Let the complex number z = x + iy be such tha t \frac{2z-3i}{2z+i} is purely imaginary. If x+y^{2}=0,  then y^{4}+y^{2}-y  is equal to :

For two non-zero complex numbers \mathrm{z_1 \: \: and\: \: z_2,} if \mathrm{\operatorname{Re}\left(z_1 z_2\right)=0\: \: and \: \: \operatorname{Re}\left(z_1+z_2\right)=0}, then which of the following are possible?
\mathrm{A. \operatorname{Im}\left(z_1\right)>0 \: and\: \operatorname{Im}\left(z_2\right)>0}
\mathrm{B. \operatorname{Im}\left(z_1\right)<0\: and \: \operatorname{Im}\left(z_2\right)>0}
\mathrm{C. \operatorname{Im}\left(z_1\right)>0 \: and\: \operatorname{Im}\left(z_2\right)<0}
\mathrm{D. \operatorname{Im}\left(z_1\right)<0 \: and\: \operatorname{Im}\left(z_2\right)<0}
Choose the correct answer from the options given below:


 

Concepts Covered - 2

Algebraic operation on Complex Numbers

1. Addition of Two Complex Numbers

z1 = a + ib and z2 = c + id be any two complex numbers. Then, the sum z1 + z2 is defined as 

z1 + z2 = (a + ib) + (c + id) = (a + c) + i(b + d)

For example,  z1= (3 - 4i) and z2 = (2 + 5i), then z1 + z2 is

(3 − 4i) + (2 + 5i) = (3 + 2) + (−4 + 5)i = 5 + i


 

2. Difference of Two Complex Numbers

z1 = a + ib and z2 = c + id be any two complex numbers. Then, the difference z1 - z2 is defined as 

z1 - z2 =  (a + ib) - (c + id) =  (a - c) + i(b - d)

For example,  z1= (-5 + 7i) and z2 = (-11 + 2i), then z1 - z2 is

(−5 + 7i) − (−11 + 2i) = −5 + 7i + 11 − 2i

                                  = −5 + 11 + 7i − 2i

                                  = (−5 + 11) + (7 − 2)i

                                  =  6 + 5i


 

3. Multiplication of Two Complex Numbers

z1 = a + ib and z2 = c + id be any two complex numbers. Then, the multiplication z1・z2 is defined as 

z1・z2 = (a + ib)・ (c + id)

          = ac + iad + ibc + i2bd

          = ac + i(ad + bc) - bd

          = (ac - bd) + i(ad + bc)

For example, z1= (4 + 3i) and z2 = (2 - 5i), then z1・ z2 is

(4 + 3i)(2 − 5i) = 4(2) − 4(5i) + 3i(2) − (3i)(5i)

                        =  8 − 20i + 6i − 15(i2)

                        =  (8 + 15) + (−20 + 6)i

                        = 23 - 14i


 

4. Division of Two Complex Numbers

z1 = a + ib and z2 = c + id (and z2 is non-zero) be any two complex numbers. Then, the division \\\mathrm{\frac{z_1}{z_2}}   is defined as 

 

\\\mathrm{\frac{z_1}{z_2}=\frac{a+ib}{c+id}\cdot \frac{c-id}{c-id}}\\\mathrm{[multiplying \;numerator\;and\;denominator\;by\;c-id\;where\;one\;of\;c\;and\;d\;is\;non-zero]}\\\mathrm{\frac{z_1}{z_2}=\frac{ac-iad+ibc-i^2bd}{c^2-\left(id\right)^2}=\frac{ac+i\left(bc-ad\right)+bd}{c^2-i^2d^2}}\\\mathrm{\frac{z_1}{z_2}=\frac{ac+bd+i\left(bc-ad\right)}{c^2+d^2}}\\\mathrm{\mathbf{\frac{z_1}{z_2}=\frac{ac+bd}{c^2+d^2}+i\frac{bc-ad}{c^2+d^2}}}

 

Properties of Addition of Complex Numbers
  1. Closure law: sum of two complex number is a complex number, i.e. z1 + z2 is a complex number for all complex numbers z1 and z2.
  2. Commutative law : for any two complex numbers  z1 and z2 ,  z1 + z2 = z2 + z1
  3. Associative law : for any three complex numbers  z1, z2 and z3 ,   (z1 + z2) + z3 =   z1 + (z2 + z3)
  4. Additive identity: if the sum of a complex number z1 with another complex number z2 is z1, then z2 is called the additive identity.  We have z + 0 = z = 0 + z, so 0 is additive identity.
  5. Additive inverse : To every complex number z = a + ib, we have the complex number – a + i(– b) (denoted as – z), called the additive inverse or negative of z. i.e. z + (-z) = 0 (-z is additive inverse).

Study it with Videos

Algebraic operation on Complex Numbers
Properties of Addition of Complex Numbers

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Get Answer to all your questions

Back to top