Amity University Noida B.Tech Admissions 2025
ApplyAmong Top 30 National Universities for Engineering (NIRF 2024) | 30+ Specializations | AI Powered Learning & State-of-the-Art Facilities
4 Questions around this concept.
$\mathrm{If\; A= \begin{bmatrix} \cos A & -\sin A & 0\\ \sin A &\cos A &0 \\ 0& 0 & 1 \end{bmatrix}\; equals}$
$
\text { Find the minor of } a_{33} \text { in }\left|\begin{array}{ccc}
2 & 3 & 4 \\
7 & 2 & -5 \\
8 & -1 & 4
\end{array}\right|
$
The cofactor of the matrix or determinant is the same as the minor of the matrix or determinant but the only difference is of sign, if $\mathrm{i}+\mathrm{j}$ is even then the cofactor $=$ minor if $\mathrm{i}+\mathrm{j}$ is odd then cofactor $=-\mathrm{minor}$,
$
\begin{aligned}
\mathrm{C}_{\mathrm{ij}} & =(-1)^{i+j} \mathrm{M}_{i j} \\
& =\left\{\begin{array}{cc}
M_{i j} & \text { if } \mathrm{i}+\mathrm{j} \text { is an even integer } \\
-M_{i j} & \text { if } \mathrm{i}+\mathrm{j} \text { is an odd integer }
\end{array}\right.
\end{aligned}
$
Or we can write, $\mathrm{C}_{\mathrm{ij}}$ is co - factor of $\mathrm{a}_{\mathrm{ij}}$
For example,
$
\Delta=\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right|
$
then, minor of the element $\mathrm{a}_{21}$ is
$
M_{21}=\left|\begin{array}{ll}
a_{12} & a_{13} \\
a_{32} & a_{33}
\end{array}\right| \text { and that of } a_{32} \text { is } M_{32}=\left|\begin{array}{ll}
a_{11} & a_{13} \\
a_{21} & a_{23}
\end{array}\right| .
$
Cofactor of the element $a_{21}$ is
$
C_{21}=(-1)^{2+1} M_{21}=-\left|\begin{array}{ll}
a_{12} & a_{13} \\
a_{32} & a_{33}
\end{array}\right|
$
If we expand the determinant $\Delta$ along the first row, then value of $\Delta$ in terms of minors is $\mathbf{a}_{11} \mathbf{M}_{11}-\mathbf{a}_{12} \mathrm{M}_{12}-\mathbf{a}_{13} \mathbf{M}_{13}$.
"Stay in the loop. Receive exam news, study resources, and expert advice!"