JEE Main Eligibility Marks in 12th Subject Wise 2025 – Check Minimum Marks Criteria

Maximum and Minimum value of Trigonometric Function - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • 26 Questions around this concept.

Solve by difficulty

The number of solutions of the equation $4 \sin ^2 x-4 \cos ^3 x+9-4 \cos x=0 ; x \in[-2 \pi, 2 \pi]$ is :

The number of solutions of $\cos x+\sqrt{3} \sin x=5,0 \leq x \leq 5 \pi$ is

 

The minimum value of $3 \cos x+4 \sin x+8$ is

 

Let a rectangle ABCD of sides 2 and 4 be inscribed in another rectangle PQRS such that the vertices of the rectangle ABCD lie on the sides of the rectangle PQRS. Let a and b be the sides of the rectangle PQRS when its area is maximum. Then $(\mathrm{a}+\mathrm{b})^2$ is equal to :

Concepts Covered - 1

Maximum and Minimum value of Trigonometric Function

Maximum and Minimum Value of Trigonometric Function
We know that range of $\sin x$ and $\cos x$ which is $[-1,1]$,
If there is a trigonometric function in the form of $a \sin x+b \cos x$, then replace a with $r \cos \theta$ and $b$ with $\mathrm{r} \sin \theta$.

Then we have,

$
\begin{aligned}
a \sin \mathrm{x}+b \cos \mathrm{x} & =r \cos \theta \sin \mathrm{x}+r \sin \theta \cos \mathrm{x} \\
& =r(\cos \theta \sin \mathrm{x}+\sin \theta \cos \mathrm{x}) \\
& =r \sin (\mathrm{x}+\theta)
\end{aligned}
$

where $r=\sqrt{a^2+b^2}$ and, $\tan \theta=\frac{b}{a}$
Since, $\quad-1 \leq \sin (x+\theta) \leq 1$
Multiply with 'r'

$
\begin{aligned}
& \Rightarrow-\mathrm{r} \leq \mathrm{r} \sin (\mathrm{x}+\theta) \leq \mathrm{r} \\
& \Rightarrow-\sqrt{a^2+b^2} \leq \mathrm{r} \sin (\mathrm{x}+\theta) \leq \sqrt{a^2+b^2} \\
& \Rightarrow-\sqrt{a^2+b^2} \leq a \sin \mathrm{x}+b \cos \mathrm{x} \leq \sqrt{a^2+b^2}
\end{aligned}
$
So, the minimum value of trigonometric function a $\sin \mathrm{x}+\mathrm{b} \cos \mathrm{x}$ is $-\sqrt{a^2+b^2}$ and maximum value is $\sqrt{a^2+b^2}$.

Study it with Videos

Maximum and Minimum value of Trigonometric Function

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Get Answer to all your questions

Back to top