Amity University Noida B.Tech Admissions 2025
ApplyAmong Top 30 National Universities for Engineering (NIRF 2024) | 30+ Specializations | AI Powered Learning & State-of-the-Art Facilities
8 Questions around this concept.
If $\frac{2}{\log x}=\frac{3}{\log y}=\frac{4}{\log z}$ , Find relation between x, y, z
If, $\frac{\log _2 x}{4}=\frac{\log _2 y}{6}=\frac{\log _2 z}{3 k}$ and $x^3 y^2 z=1$, then $k=$
Which graph represents the following function: $f(x) = \log_5 x$ ?
Let $f(a)=\log _{a^2} 25$ and $g(a)=\log _a 5$ then $f(a)=g(a)$ holds for a belonging to
Equation of the form $\log _{\mathrm{a}} \mathrm{f}(\mathrm{x})=\mathrm{b}(\mathrm{a}>0, \mathrm{a} \neq 1)$, is known as logarithmic equation. this is equivalent to the equation $\mathrm{f}(\mathrm{x})=\mathrm{a}^{\mathrm{b}}(\mathrm{f}(\mathrm{x})>0)$
Let us see one example to understand
Suppose given equation is $\log _{\log _4 x} 4=2$
the base of $\log$ is greater than 0 and not equal to 1 so, $\log _4 x>0$ and $\log _4 x \neq 1$
$x>1$ and $x \neq 4$
now, using $\log _{\mathrm{a}} \mathrm{f}(\mathrm{x})=\mathrm{b} \Rightarrow \mathrm{f}(\mathrm{x})=\mathrm{a}^{\mathrm{b}}$
$
\begin{aligned}
& \Rightarrow 4=2^{\log _4 x} \Rightarrow 2^2=2^{\log _4 x} \\
& \Rightarrow 2=\log _4 x \Rightarrow x=4^2 \\
& x=16
\end{aligned}
$
If the given equation is in the form of $f\left(\log _a x\right)=0$, where $a>0$ and $a$ is not equal to 1 . In this case, put $\log _a x=t$ and solve $f(t)=0$.
And if the given equation is in the form of $f\left(\log _x A\right)=0$, where $A>0$. In this case, put $\log _x A=t$ and solve $f(t)=0$.
For example,
Suppose given equation is $\frac{(\log x)^2-4 \log x^2+16}{2-\log x}=0$ given equation can be written as after substituting $t=\log \mathrm{x}$
$
\begin{aligned}
& \Rightarrow \frac{\mathrm{t}^2-8 \mathrm{t}+16}{2-\mathrm{t}}=0 \\
& \Rightarrow \frac{(\mathrm{t}-4)(\mathrm{t}-4)}{(2-\mathrm{t})}=0 \\
& \Rightarrow \mathrm{t}=4 \\
& \mathrm{t}=\log \mathrm{x}=4 \\
& \because \log \mathrm{x}=\log _{10} \mathrm{x} \\
& \mathrm{x}=10^4
\end{aligned}
$
"Stay in the loop. Receive exam news, study resources, and expert advice!"