JEE Main Eligibility Marks in 12th Subject Wise 2025 – Check Minimum Marks Criteria

Law Of Tangents - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • 7 Questions around this concept.

Solve by difficulty

Wlth the usual notation, in $\triangle A B C$, if $\angle A+\angle B=120^{\circ}, a=\sqrt{3}+1$ and $b=\sqrt{3}-1$, then the ratio $\angle A: \angle B$, is:

If sec\ x=\frac{4}{3} ,x  is in the first quadrant, find the value of tan\ x.

In a triangle ABC , if $\angle C=90^{\circ}, a=3 b$, then $(A-B)$ equals

$
\text { In triangle } A B C \text {, if } \angle C=90^{\circ}, a=3 b \text {, then }(A-B) \text { equals }
$

Concepts Covered - 1

Tangent Rule or Napier’s Analogy

Tangent Rule or Napier's Analogy
For any $\triangle A B C$,

$
\tan \left(\frac{\mathrm{A}-\mathrm{B}}{2}\right)=\frac{\mathrm{a}-\mathrm{b}}{\mathrm{a}+\mathrm{b}} \cot \frac{\mathrm{C}}{2}
$
To prove this, we will be using the sine rule and formula of sum/difference into a product of sine and cosine.

From the sine rule, we have

$
\begin{aligned}
& \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
& \Rightarrow \quad \frac{\sin \mathrm{~B}}{\sin \mathrm{C}}=\frac{\mathrm{b}}{\mathrm{c}}
\end{aligned}
$
Using the Componendo and Dividendo theorem

$
\Rightarrow \quad \frac{\sin B-\sin C}{\sin B+\sin C}=\frac{b-c}{b+c}
$

the formula of sum/Difference into products of sine

$
\begin{aligned}
& \Rightarrow \quad \frac{2 \cos \left(\frac{\mathrm{~B}+\mathrm{C}}{2}\right) \sin \left(\frac{\mathrm{B}-\mathrm{C}}{2}\right)}{2 \sin \left(\frac{\mathrm{~B}+\mathrm{C}}{2}\right) \cos \left(\frac{\mathrm{B}-\mathrm{C}}{2}\right)}=\frac{\mathrm{b}-\mathrm{c}}{\mathrm{~b}+\mathrm{c}} \\
& \Rightarrow \quad \cot \left(\frac{\mathrm{~B}+\mathrm{C}}{2}\right) \tan \left(\frac{\mathrm{B}-\mathrm{C}}{2}\right)=\frac{\mathrm{b}-\mathrm{c}}{\mathrm{~b}+\mathrm{c}} \\
& \Rightarrow \quad \tan \frac{\mathrm{~A}}{2} \tan \left(\frac{\mathrm{~B}-\mathrm{C}}{2}\right)=\frac{\mathrm{b}-\mathrm{c}}{\mathrm{~b}+\mathrm{c}} \\
& {\left[\because \frac{\mathrm{~B}+\mathrm{C}}{2}=\frac{\pi-\mathrm{A}}{2} \Rightarrow \cot \left(\frac{\mathrm{~B}+\mathrm{C}}{2}\right)=\cot \left(\frac{\pi}{2}-\frac{\mathrm{A}}{2}\right)=\tan \frac{\mathrm{A}}{2}\right]} \\
& \Rightarrow \quad \frac{\tan \left(\frac{\mathrm{B}-\mathrm{C}}{2}\right)}{\cot \frac{\mathrm{A}}{2}}=\frac{\mathrm{b}-\mathrm{c}}{\mathrm{~b}+\mathrm{c}} \\
& \Rightarrow \quad \tan \left(\frac{\mathrm{~B}-\mathrm{C}}{2}\right)=\frac{\mathrm{b}-\mathrm{c}}{\mathrm{~b}+\mathrm{c}} \cot \frac{\mathrm{~A}}{2}
\end{aligned}
$

By using the same method, other formulas can also be proved

So,

$\begin{aligned} & \tan \left(\frac{\mathrm{A}-\mathrm{B}}{2}\right)=\frac{\mathrm{a}-\mathrm{b}}{\mathrm{a}+\mathrm{b}} \cot \frac{\mathrm{C}}{2} \\ & \tan \left(\frac{\mathrm{~B}-\mathrm{C}}{2}\right)=\frac{\mathrm{b}-\mathrm{c}}{\mathrm{b}+\mathrm{c}} \cot \frac{\mathrm{A}}{2} \\ & \tan \left(\frac{\mathrm{C}-\mathrm{A}}{2}\right)=\frac{\mathrm{c}-\mathrm{a}}{\mathrm{c}+\mathrm{a}} \cot \frac{\mathrm{B}}{2}\end{aligned}$

Study it with Videos

Tangent Rule or Napier’s Analogy

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Books

Reference Books

Tangent Rule or Napier’s Analogy

Mathematics for Joint Entrance Examination JEE (Advanced) : Trigonometry

Page No. : 5.4

Line : 36

E-books & Sample Papers

Get Answer to all your questions

Back to top