Amity University-Noida B.Tech Admissions 2026
Among top 100 Universities Globally in the Times Higher Education (THE) Interdisciplinary Science Rankings 2026
Half Angle Formula is considered one of the most asked concept.
16 Questions around this concept.
Let $\alpha, \beta$ be such that $\pi<\alpha-\beta<3 \pi$.If $\sin \alpha+\sin \beta=-21 / 65$, and $\cos \alpha+\cos \beta=-27 / 65$ then the value of $\cos \frac{\alpha-\beta}{2}$ is :
The value of using half angle identity.
The value of is
New: JEE Main 2026 Answer Key Out; Download Now
JEE Main 2026 Tools: Rank Predictor | College Predictor
Latest: JEE Main 2026 Session 2 Registration Starts; Apply Now
$If \sin \frac{\theta }{2}= \frac{2}{5} where 0^{\circ}< \theta < 90^{\circ}, then \tan \theta =$
$If \sin \frac{A}{3}= \frac{1}{5} ; 0^{\circ}< A< 90^{\circ},then \tan A=$
$If \sin A=\frac{2}{3},then\left | \sin \frac{A}{2}-\cos \frac{A}{2} \right |=$
$If \sin A=\frac{3}{5},then \left | \sin \frac{A}{2}+\cos \frac{A}{2} \right |=$
What is the value of $\cot \frac{A}{2}$ if $\sin A=\frac{3}{5}$ ?
Half Angle Formula
1. $\sin \left(\frac{\alpha}{2}\right)= \pm \sqrt{\frac{1-\cos \alpha}{2}}$
2. $\cos \left(\frac{\alpha}{2}\right)= \pm \sqrt{\frac{1+\cos \alpha}{2}}$
3. $\tan \left(\frac{\alpha}{2}\right)= \pm \sqrt{\frac{1-\cos \alpha}{1+\cos \alpha}}$
These formulae can be derived from the reduction formulas and we can use when we have an angle that is half the size of a special angle.
The half-angle formula for sine is derived as follows:
$
\begin{aligned}
\sin ^2 \theta & =\frac{1-\cos (2 \theta)}{2} \\
\sin ^2\left(\frac{\alpha}{2}\right) & =\frac{1-\cos \left(2 \cdot \frac{\alpha}{2}\right)}{2} \\
& =\frac{1-\cos \alpha}{2} \\
\sin \left(\frac{\alpha}{2}\right) & = \pm \sqrt{\frac{1-\cos \alpha}{2}}
\end{aligned}
$
To derive the half-angle formula for cosine, we have
$
\begin{aligned}
\cos ^2 \theta & =\frac{1+\cos (2 \theta)}{2} \\
\cos ^2\left(\frac{\alpha}{2}\right) & =\frac{1+\cos \left(2 \cdot \frac{\alpha}{2}\right)}{2} \\
& =\frac{1+\cos \alpha}{2} \\
\cos \left(\frac{\alpha}{2}\right) & = \pm \sqrt{\frac{1+\cos \alpha}{2}}
\end{aligned}
$
For the tangent identity, we have
$\begin{aligned} \tan ^2 \theta & =\frac{1-\cos (2 \theta)}{1+\cos (2 \theta)} \\ \tan ^2\left(\frac{\alpha}{2}\right) & =\frac{1-\cos \left(2 \cdot \frac{\alpha}{2}\right)}{1+\cos \left(2 \cdot \frac{\alpha}{2}\right)} \\ & =\frac{1-\cos \alpha}{1+\cos \alpha} \\ \tan \left(\frac{\alpha}{2}\right) & = \pm \sqrt{\frac{1-\cos \alpha}{1+\cos \alpha}}\end{aligned}$
"Stay in the loop. Receive exam news, study resources, and expert advice!"
