JEE Main 2025 Admit Card Released for January 22, 23, 24 - Check How to Download

Half Angle Formula - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • Half Angle Formula is considered one of the most asked concept.

  • 15 Questions around this concept.

Solve by difficulty

Let $\alpha, \beta$ be such that $\pi<\alpha-\beta<3 \pi$.If $\sin \alpha+\sin \beta=-21 / 65$, and $\cos \alpha+\cos \beta=-27 / 65$ then the value of $\cos \frac{\alpha-\beta}{2}$ is :

The value of  \sin\ \frac{\pi }{6} using half angle identity.

The value of \tan\ 60^{\circ} is

$If \sin \frac{\theta }{2}= \frac{2}{5} where 0^{\circ}< \theta < 90^{\circ}, then \tan \theta =$

$If \sin \frac{A}{3}= \frac{1}{5} ; 0^{\circ}< A< 90^{\circ},then \tan A=$

$If \sin A=\frac{2}{3},then\left | \sin \frac{A}{2}-\cos \frac{A}{2} \right |=$

$If \sin A=\frac{3}{5},then \left | \sin \frac{A}{2}+\cos \frac{A}{2} \right |=$

UPES B.Tech Admissions 2025

Ranked #42 among Engineering colleges in India by NIRF | Highest CTC 50 LPA , 100% Placements

Amrita Vishwa Vidyapeetham | B.Tech Admissions 2025

Recognized as Institute of Eminence by Govt. of India | NAAC ‘A++’ Grade | Upto 75% Scholarships | Last Date to Apply: 25th Jan

Concepts Covered - 1

Half Angle Formula

Half Angle Formula
1. $\sin \left(\frac{\alpha}{2}\right)= \pm \sqrt{\frac{1-\cos \alpha}{2}}$
2. $\cos \left(\frac{\alpha}{2}\right)= \pm \sqrt{\frac{1+\cos \alpha}{2}}$
3. $\tan \left(\frac{\alpha}{2}\right)= \pm \sqrt{\frac{1-\cos \alpha}{1+\cos \alpha}}$

These formulae can be derived from the reduction formulas and we can use when we have an angle that is half the size of a special angle.

The half-angle formula for sine is derived as follows:

$
\begin{aligned}
\sin ^2 \theta & =\frac{1-\cos (2 \theta)}{2} \\
\sin ^2\left(\frac{\alpha}{2}\right) & =\frac{1-\cos \left(2 \cdot \frac{\alpha}{2}\right)}{2} \\
& =\frac{1-\cos \alpha}{2} \\
\sin \left(\frac{\alpha}{2}\right) & = \pm \sqrt{\frac{1-\cos \alpha}{2}}
\end{aligned}
$
To derive the half-angle formula for cosine, we have

$
\begin{aligned}
\cos ^2 \theta & =\frac{1+\cos (2 \theta)}{2} \\
\cos ^2\left(\frac{\alpha}{2}\right) & =\frac{1+\cos \left(2 \cdot \frac{\alpha}{2}\right)}{2} \\
& =\frac{1+\cos \alpha}{2} \\
\cos \left(\frac{\alpha}{2}\right) & = \pm \sqrt{\frac{1+\cos \alpha}{2}}
\end{aligned}
$

For the tangent identity, we have

$\begin{aligned} \tan ^2 \theta & =\frac{1-\cos (2 \theta)}{1+\cos (2 \theta)} \\ \tan ^2\left(\frac{\alpha}{2}\right) & =\frac{1-\cos \left(2 \cdot \frac{\alpha}{2}\right)}{1+\cos \left(2 \cdot \frac{\alpha}{2}\right)} \\ & =\frac{1-\cos \alpha}{1+\cos \alpha} \\ \tan \left(\frac{\alpha}{2}\right) & = \pm \sqrt{\frac{1-\cos \alpha}{1+\cos \alpha}}\end{aligned}$

Study it with Videos

Half Angle Formula

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Books

Reference Books

Half Angle Formula

Mathematics for Joint Entrance Examination JEE (Advanced) : Trigonometry

Page No. : 3.11

Line : 34

E-books & Sample Papers

Get Answer to all your questions

Back to top