JEE Main Toppers List 2026: 100 Percentile Scorers and Rank 1 Achievers in Session 1

Graph of Inverse Trigonometric Function - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • 69 Questions around this concept.

Solve by difficulty

The value of $\cos^{-1}(\cos 4)\\$ is

$Graph\, \, of\, \, \cos^{-1}x\, \, is\, \, symmetric\, \, about:$

Find the the value of $\theta$ if $\tan ^{-1}\left(\frac{1+\sin x}{\cos x}\right)=2 x$

$\tan \left(\cos ^{-1} x\right)$ is equal to ?

$\cot ^{-1}\left(\cot \left(\frac{7 \pi}{4}\right)\right)=$

$Graph \, \, of\, \, \tan^{-1}x\, \, is\, \, symmetric\, \, about:$

The value of  $\cot ^{-1}\left ( \cot\left ( -2 \right ) \right )$  is

Amity University-Noida B.Tech Admissions 2026

Among top 100 Universities Globally in the Times Higher Education (THE) Interdisciplinary Science Rankings 2026

UPES B.Tech Admissions 2026

Ranked #43 among Engineering colleges in India by NIRF | Highest Package 1.3 CR , 100% Placements

If $\tan \left(\cos ^{-1} x\right)=\operatorname{Sin}\left(\cot ^{-1} \frac{1}{2}\right)$   then x is equal to

If $2 \tan ^{-1}(\cos x)=\tan ^{-1}(2 \operatorname{cosec} x)$ then the value of x is

JEE Main 2026 Rank Predictor
Use the JEE Main 2026 Rank Predictor to estimate your expected rank based on your scores or percentile and plan your college options smartly.
Try Now

The value of   $\tan\left ( 2\sin ^{-1}\left( \frac{1}{3} \right )+ \frac{\pi}{4} \right )$  is

Concepts Covered - 6

Graph of Principal Value of function f-1 (f (x)) (Part 1)

Graph of Principal Value of function $\mathrm{f}^{-1}(\mathrm{f}(\mathrm{x}))(\sin$ and $\cos )$
Graph of $\sin ^{-1}(\sin (x))$

$
\begin{aligned}
& y=\sin ^{-1}(\sin (x)) \\
& \sin y=\sin x
\end{aligned}
$
$
\Rightarrow \quad y=n \pi+(-1)^n x, n \in I \text { (integer) }
$
Since, $y \in[-\pi / 2, \pi / 2]$, we have different expressions for $\sin ^{-1}(\sin (x))$ for different values of $x$.

Value of n

Relation

Range of x

...

...

...

...

...

...

n = -2

y = -2π + x

x ∈ [3π/2, 5π/2]

n = -1

y = -π - x

x ∈ [-3π/2, -π/2]

n = 0

y = x

x ∈ [-π/2, π/2]

n = 1

y = π - x

x ∈ [π/2, 3π/2] 

n = 2

y = 2π + x

x ∈ [-5π/2, -3π/2]

...

...

...

...

...

...

From above, we can plot the graph of $y=\sin -1(\sin (x))$

2. Graph of $\cos ^{-1}(\cos (\mathrm{x}))$

$
\begin{array}{ll} 
& y=\cos ^{-1}(\cos (x)) \\
\therefore & \cos y=\cos x \\
\Rightarrow & y=2 n \pi \pm x, n \in I \text { (integer) }
\end{array}
$
To draw the graph of $y=\cos ^{-1}(\cos (x))$, we draw all the lines of $y=2 n \pi \pm x, n \in I$ for $y \in[0, \pi]$.

Graph of Principal Value of function f-1 (f (x)) (Part 2)

Graph of Principal Value of function $\mathrm{f}^{-1}(\mathrm{f}(\mathrm{x})$ ) (tan and cot)
1. Graph of $\tan ^{-1}(\tan (\mathrm{x}))$

The domain of the function is R and range is $(-\pi / 2, \pi / 2)$

$
\begin{array}{ll} 
& \mathrm{y}=\tan ^{-1}(\tan (\mathrm{x})) \\
\therefore & \tan \mathrm{y}=\tan \mathrm{x} \\
\Rightarrow & \mathrm{y}=\mathrm{n} \pi+\mathrm{x}, \mathrm{n} \in \mathrm{I} \text { (integer) }
\end{array}
$
To draw the graph of $y=\tan ^{-1}(\tan (x))$, we draw all the line of $y=n \pi+x, n \in I$ for $y \in(-\pi / 2, \pi / 2)$

2. Graph of $\cot ^{-1}(\cot (x))$

The domain of the function is $R$ and the range is $(0, \pi)$

$
\begin{array}{ll} 
& y=\cot ^{-1}(\cot (x)) \\
\therefore & \cot y=\cot x \\
\Rightarrow & y=n \pi+x, n \in I \text { (integer) }
\end{array}
$
To draw the graph of $y=\cot ^{-1}(\cot (x))$, we draw all the lines of $y=n \pi+x, n \in I$ for $y \in(0, \pi)$.


Graph of Principal Value of function f-1 (f (x)) (Part 3)

Graph of Principal Value of function $f^{-1}(f(x))(\operatorname{cosec}$ and $s e c)$
1. Graph of $\operatorname{cosec}^{-1}(\operatorname{cosec}(x))$

Domain of the function is $R-\{n \pi, n \in l\}$ and range is $[-\pi / 2, \pi / 2]-\{0\}$

$
\begin{array}{ll} 
& y=\operatorname{cosec}^{-1}(\operatorname{cosec}(x)) \\
\therefore \quad & \operatorname{cosec} y=\operatorname{cosec} x \\
\text { or } & \sin x=\sin y
\end{array}
$
Hence, the graph of $\operatorname{cosec}^{-1}(\operatorname{cosec}(x))$ is the same as that of $y=\sin ^{-1}(\sin (x))$, but excluding points $\mathrm{x}=\mathrm{n} \pi, \mathrm{n} \in \mathrm{I}$.

2. Graph of $\sec ^{-1}(\sec (x))$

Domain of the function is $R-\{(2 n+1) \pi / 2, n \in l\}$ and range is $[0, \pi]-\{\pi / 2\}$

$
\begin{array}{ll} 
& y=\sec ^{-1}(\sec (x)) \\
\therefore \quad & \sec y=\sec x \\
\text { or } \quad & \cos y=\cos x
\end{array}
$
Hence, graph of $\sec ^{-1}(\sec (x))$ is the same as that of $y=\cos ^{-1}(\cos (x))$, but excluding points $x=$ $(2 n+1) \pi / 2, n \in I$.

Conversion of one ITF to other

Conversion of one ITF to another
We can write the different inverse trigonometric functions in terms of other inverse trigonometric functions.
1. Converting $\sin ^{-1} x$

If $0<x<1$
Let $\sin ^{-1} \mathrm{x}=\Theta$. Then $\sin \Theta=\mathrm{x}$ or $\sin \Theta=\mathrm{x} / 1$
So, we have the right-angled triangle

From the figure

$
\begin{aligned}
& \cos \theta=\frac{\sqrt{1-\mathrm{x}^2}}{1}=\sqrt{1-\mathrm{x}^2} \\
& \therefore \quad \theta=\sin ^{-1} \mathrm{x}=\cos ^{-1} \sqrt{1-\mathrm{x}^2}
\end{aligned}
$
Also, we have $\theta=\tan ^{-1} \frac{x}{\sqrt{1-x^2}}$

$
\begin{aligned}
& =\cot ^{-1} \frac{\sqrt{1-\mathrm{x}^2}}{\mathrm{x}} \\
& =\sec ^{-1} \frac{1}{\sqrt{1-\mathrm{x}^2}} \\
& =\csc ^{-1} \frac{1}{\mathrm{x}}
\end{aligned}
$

2. Converting cos-1 x

If $0<x<1$
Let $\cos ^{-1} \mathrm{x}=\Theta$, implies $\cos \Theta=\mathrm{x}$
We have the following right-angled triangle

From the figure

$
\begin{aligned}
& \sin \theta=\frac{\sqrt{1-\mathrm{x}^2}}{1}=\sqrt{1-\mathrm{x}^2} \\
& \therefore \quad \theta=\cos ^{-1} \mathrm{x}=\sin ^{-1} \sqrt{1-\mathrm{x}^2}
\end{aligned}
$
Also, we have $\theta=\tan ^{-1} \frac{\sqrt{1-x^2}}{x}$

$
\begin{aligned}
& =\cot ^{-1} \frac{\mathrm{x}}{\sqrt{1-\mathrm{x}^2}} \\
& =\sec ^{-1} \frac{1}{\mathrm{x}} \\
& =\csc ^{-1} \frac{1}{\sqrt{1-\mathrm{x}^2}}
\end{aligned}
$

3. Converting $\tan ^{-1} x$

If $x>0$
Let $\tan ^{-1} \mathrm{x}=\Theta$, implies $\tan \Theta=\mathrm{x}$

We have the following right-angled triangle

From the figure

$
\begin{aligned}
\sin \theta & =\frac{\mathrm{x}}{\sqrt{1+\mathrm{x}^2}} \\
\theta & =\tan ^{-1} \mathrm{x}=\sin ^{-1} \frac{\mathrm{x}}{\sqrt{1+\mathrm{x}^2}}
\end{aligned}
$
Also, we have $\theta=\cos ^{-1} \frac{1}{\sqrt{1+x^2}}$

$
\begin{aligned}
& =\cot ^{-1} \frac{1}{x} \\
& =\sec ^{-1} \sqrt{1+x^2} \\
& =\csc ^{-1} \frac{\sqrt{1+x^2}}{x}
\end{aligned}
$

Relating f-1(x) with f-1( -x)

Relating $f^{-1}(x)$ with $f^{-1}(-x)$
We have the following important results
1. $\sin ^{-1}(-x)=-\sin ^{-1}(x)$ for all $x \in[-1,1]$

Proof:
Let $-x \in[-1,1]$, so $x \in[-1,1]$
Also assume $\sin ^{-1}(-x)=\Theta \quad$ (Hence $\left.\Theta \in[-\pi / 2, \pi / 2]\right)$
Taking sin of both sides

$
\begin{aligned}
& \sin \left(\sin ^{-1}(-x)\right)=\sin (\Theta) \\
& -x=\sin \Theta \\
& \Rightarrow x=-\sin \Theta \\
& \Rightarrow x=\sin (-\Theta)
\end{aligned}
$
Taking $\sin ^{-1}$ of both sides

$
\Rightarrow \sin ^{-1}(x)=\sin ^{-1}(\sin (-\Theta))
$

$[$ As $\Theta \in[-\pi / 2, \pi / 2]$, so $-\Theta \in[-\pi / 2, \pi / 2]]$

$
\Rightarrow-\sin ^{-1}(x)=\Theta
$

From (i) and (ii), we get

$
\Rightarrow \sin ^{-1}(-x)=-\sin ^{-1}(x)
$
Similarly, we can prove
2. $\tan ^{-1}(-x)=-\tan ^{-1}(x)$ for all $x \in R$ and
3. $\operatorname{cosec}^{-1}(-x)=-\operatorname{cosec}^{-1}(x)$ for all $x \in R-(-1,1)$
4. $\cos ^{-1}(-x)=\pi-\cos ^{-1}(x)$ for all $x \in[-1,1]$

Proof:

Let $-x \in[-1,1]$
And assume $\cos ^{-1}(-x)=\Theta \quad$ (Hence $\Theta \in[0, \pi]$ )
Taking cos of both sides

$
\begin{aligned}
& \cos \left(\cos ^{-1}(-\mathrm{x})\right)=\cos \Theta \\
& \therefore-\mathrm{x}=\cos \Theta \\
& \Rightarrow \mathrm{x}=-\cos \Theta \\
& \Rightarrow \mathrm{x}=\cos (\pi-\Theta)
\end{aligned}
$
Taking $\cos ^{-1}$ of both sides

$
\begin{aligned}
& \Rightarrow \cos ^{-1}(x)=\cos ^{-1}(\cos (\pi-\Theta)) \\
& {[\because \Theta \in[0, \pi], \text { so } \pi-\Theta \in[0, \pi]]}
\end{aligned}
$

$
\Rightarrow \Theta=\pi-\cos ^{-1}(x)
$
From (i) and (ii), we get

$
\Rightarrow \cos ^{-1}(-x)=\pi-\cos ^{-1}(x)
$
Similarly, we can prove
5. $\sec ^{-1}(-x)=\pi-\sec ^{-1}(x)$ for all $x \in R-(-1,1)$
6. $\cot ^{-1}(-x)=\pi-\cot ^{-1}(x)$ for all $x \in R$

Relating f-1(x) with  f-1(1/x)

Relating $f^{-1}(x)$ with $f^{-1}(1 / x)$
1. $\sin ^{-1}\left(\frac{1}{\mathrm{x}}\right)=\csc ^{-1} \mathrm{x} \quad$ for all $\mathrm{x} \in(-\infty,-1] \cup[1, \infty)$
2. $\cos ^{-1}\left(\frac{1}{\mathrm{x}}\right)=\sec ^{-1} \mathrm{x} \quad$ for all $\mathrm{x} \in(-\infty,-1] \cup[1, \infty)$
3. $\tan ^{-1}\left(\frac{1}{\mathrm{x}}\right)=\left\{\begin{array}{cc}\cot ^{-1} x & \text { for } x>0 \\ -\pi+\cot ^{-1} x & \text { for } x<0\end{array}\right.$

Proof:
1.

$
\begin{aligned}
& \text { Let } \csc ^{-1} \mathrm{x}=\theta \\
& \text { where } \theta \in[-\pi / 2, \pi / 2]-\{0\} \\
& \text { and } \mathrm{x} \in(-\infty,-1] \cup[1, \infty) \\
& \therefore \quad \mathrm{x}=\csc \theta \\
& \Rightarrow \quad \frac{1}{\mathrm{x}}=\sin \theta \\
& \Rightarrow \quad \sin ^{-1} \frac{1}{\mathrm{x}}=\sin ^{-1}(\sin \theta) \\
& \Rightarrow \quad \theta=\sin ^{-1} \frac{1}{\mathrm{x}}(\text { as } \theta \in[-\pi / 2, \pi / 2]-\{0\})
\end{aligned}
$
From (i) and (ii) we get

$
\sin ^{-1}\left(\frac{1}{x}\right)=\csc ^{-1} x
$

2.

$
\begin{aligned}
& \text { Let } \sec ^{-1} \mathrm{x}=\theta \\
& \text { where } \theta \in[0, \pi]-\{\pi / 2\} \\
& \text { and } \mathrm{x} \in(-\infty,-1] \cup[1, \infty) \\
& \therefore \quad \mathrm{x}=\sec \theta \\
& \Rightarrow \quad \frac{1}{\mathrm{x}}=\cos \theta \\
& \Rightarrow \quad \cos ^{-1} \frac{1}{\mathrm{x}}=\cos ^{-1}(\cos \theta) \\
& \Rightarrow \quad \theta=\cos ^{-1} \frac{1}{\mathrm{x}}(\operatorname{as} \theta \in[0, \pi]-\{\pi / 2\})
\end{aligned}
$
From (i) and (ii) we get

$
\cos ^{-1}\left(\frac{1}{x}\right)=\sec ^{-1} x
$

3.

Let $\cot ^{-1} \mathrm{x}=\theta$, where $\theta \in(0, \pi)$ and $\mathrm{x} \in \mathrm{R}$

$
\begin{array}{ll}
\therefore & \mathrm{x}=\cot \theta \\
\Rightarrow & \frac{1}{\mathrm{x}}=\tan \theta \\
\Rightarrow & \tan ^{-1}\left(\frac{1}{\mathrm{x}}\right)=\tan ^{-1}(\tan \theta)
\end{array}
$

From the graph

$\begin{aligned} \tan ^{-1}\left(\frac{1}{\mathrm{x}}\right) & = \begin{cases}\theta, & 0<\theta<\pi / 2 \\ -\pi+\theta, & \pi / 2<\theta<\pi\end{cases} \\ & = \begin{cases}\cot ^{-1} x, & 0<\cot ^{-1} x<\pi / 2 \\ -\pi+\cot ^{-1} x, \pi / 2<\cot ^{-1} x<\pi\end{cases} \\ & = \begin{cases}\cot ^{-1} x, & x>0 \\ -\pi+\cot ^{-1} x, x<0\end{cases} \end{aligned}$

Study it with Videos

Graph of Principal Value of function f-1 (f (x)) (Part 1)
Graph of Principal Value of function f-1 (f (x)) (Part 2)
Graph of Principal Value of function f-1 (f (x)) (Part 3)

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Books

Reference Books

Graph of Principal Value of function f-1 (f (x)) (Part 1)

Mathematics for Joint Entrance Examination JEE (Advanced) : Trigonometry

Page No. : 7.7

Line : 54

Graph of Principal Value of function f-1 (f (x)) (Part 2)

Mathematics for Joint Entrance Examination JEE (Advanced) : Trigonometry

Page No. : 7.10

Line : 4

E-books & Sample Papers

Get Answer to all your questions