JEE Main Session 2 Admit Card Release Date 2025 - Latest Updates

General Solution of Trigonometric Equations - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • Trigonometric Equations, General Solution of some Standard Equations (Part 1) is considered one of the most asked concept.

  • 98 Questions around this concept.

Solve by difficulty

$\text { The number of principal solutions of } \tan x=1 \text { is }$

The number of solutions of the equation $\sin \theta +\cos \theta =\sin 2\theta$ in the interval $[-\pi ,\pi ]$ is

The number of solutions to $\sin \left(\pi \sin ^{2}(\theta)\right)+\sin \left(\pi \cos ^{2}(\theta)\right)=2 \cos \left(\frac{\pi}{2} \cos (\theta)\right)$ satisfying $0\leq \theta \leq 2\pi$ is

$(A) 1$
$(B) 2$
$(C) 4$
$(D) 7$

 

The number of solutions to the equation $\cos^4 x + \frac{1}{\cos^2x} = \sin^4x + \frac{1}{\sin^2x}$ in the interval $[0,2\pi]$ is 

The general solution of the equation $2 cot \frac{\theta }{2}=(1+ cot \theta )^{2}$ is :

If $\sin \theta=\frac{-1}{2}$, then general solution is :

$\cos \alpha+1=0$, then $(n \in I) \alpha=$

VIT - VITEEE 2025

National level exam conducted by VIT University, Vellore | Ranked #11 by NIRF for Engg. | NAAC A++ Accredited | Last Date to Apply: 31st March | NO Further Extensions!

UPES B.Tech Admissions 2025

Ranked #42 among Engineering colleges in India by NIRF | Highest CTC 50 LPA , 100% Placements | Last Date to Apply: 28th March

$\cos \theta=\frac{\sqrt{3}}{2}$, then general solution is $:(n \in I)$

$For \, \cos \theta =0,\, \theta \,\, is\, \, odd\,\, multiple \, \, of :$

JEE Main 2025 - 10 Full Mock Test
Aspirants who are preparing for JEE Main can download JEE Main 2025 mock test pdf which includes 10 full mock test, high scoring chapters and topics according to latest pattern and syllabus.
Download EBook

$For \, \sin (A-B)=0;\, A(n\in I)=\: \: \: \: \: \: \: \: (general \, solution)$

Concepts Covered - 4

Trigonometric Equations

Trigonometric Equations

Trigonometric equations are, as the name implies, equations that involve trigonometric functions.
Solution of Trigonometric Equation
The value of an unknown angle which satisfies the given trigonometric equation is called a solution or root of the equation. For example, $2 \sin \theta=1$, clearly $\theta=30^{\circ}$ satisfies the equation; therefore, $30^{\circ}$ is a solution of the equation. Now trigonometric equation usually has infinite solutions due to the periodic nature of trigonometric functions. So this equation also has $(360+30)^0,(720+30)^0$, $(-360+30)^0$ and so on, as its solutions.

Principal Solution
The solutions of a trigonometric equation that lie in the interval $[0,2 \pi)$. For example, if $2 \sin \theta=1$, then the two values of $\sin \theta$ between 0 and $2 \pi$ are $\pi / 6$ and $5 \pi / 6$. Thus, $\pi / 6$ and $5 \pi / 6$ are the principal solutions of equation $2 \sin \theta=1$.

General Solution
As trigonometric functions are periodic, solutions are repeated within each period so that trigonometric equations may have infinite solutions. The solution consisting of all possible solutions of a trigonometric equation is called its general solution.

Some Important General Solutions of Equations
Equations Solution 
$\sin \theta=0$ & $\theta=n \pi, \quad n \in \mathbb{I}$
$\cos \theta=0$ & $\theta=(2 n+1) \frac{\pi}{2}, \quad n \in \mathbb{I}$ 
$\tan \theta=0$ & $\theta=n \pi, \quad n \in \mathbb{I}$ 
$\sin \theta=1$ & $\theta=(4 n+1) \frac{\pi}{2}, \quad n \in \mathbb{I}$ 
$\cos \theta=1$ & $\theta=2 n \pi, \quad n \in \mathbb{I}$ 
$\sin \theta=-1$ & $\theta=(4 n-1) \frac{\pi}{2}, \quad n \in \mathbb{I}$ 
$\cos \theta=-1$ & $\theta=(2 n+1) \pi, \quad n \in \mathbb{I}$ 
$\cot \theta=0$ & $\theta=(2 n+1) \frac{\pi}{2}, \quad n \in \mathbb{I}$

General Solution of some Standard Equations (Part 1)

General Solution of some Standard Equations (Part 1)
1. $\sin \theta=\sin \alpha$

Given, $\sin \theta=\sin \alpha \Rightarrow \sin \theta-\sin \alpha=0$
$\Rightarrow 2 \cos \frac{\theta+\alpha}{2} \sin \frac{\theta-\alpha}{2}=0$
$\Rightarrow \cos \frac{\theta+\alpha}{2}=0 \quad$ or $\quad \sin \frac{\theta-\alpha}{2}=0$
$\Rightarrow \frac{\theta+\alpha}{2}=(2 \mathrm{n}+1) \frac{\pi}{2} \quad$ or $\quad \frac{\theta-\alpha}{2}=\mathrm{n} \pi, \quad \mathrm{n} \in \mathbb{I}$
$\Rightarrow \theta=(2 \mathrm{n}+1) \pi-\alpha \quad$ or $\quad \theta=2 \mathrm{n} \pi+\alpha, \quad \mathrm{n} \in \mathbb{I}$
$\Rightarrow \theta=($ any odd multiple of $\pi)-\alpha$
$\Rightarrow \theta=($ any even multiple of $\pi)+\alpha$
from (i) and (ii)

$
\theta=\mathrm{n} \pi+(-1)^{\mathrm{n}} \alpha, \quad \mathrm{n} \in \mathbb{I}
$

$\begin{aligned} & \text { 2. } \cos \theta=\cos \alpha \\ & \begin{array}{l}\Rightarrow \cos \alpha-\cos \theta=0 \\ \Rightarrow 2 \sin \frac{\alpha+\theta}{2} \sin \frac{\theta-\alpha}{2}=0 \\ \Rightarrow \quad \sin \frac{\alpha+\theta}{2}=0 \quad \text { or } \quad \sin \frac{\theta-\alpha}{2}=0 \\ \Rightarrow \quad \frac{\alpha+\theta}{2}=\mathrm{n} \pi \text { or } \frac{\theta-\alpha}{2}=\mathrm{n} \pi, \mathrm{n} \in \mathbb{I} \\ \Rightarrow \quad \theta=2 \mathrm{n} \pi-\alpha \text { or } \theta=2 \mathrm{n} \pi+\alpha, \mathrm{n} \in \mathrm{Z} \\ \Rightarrow \quad \theta=2 \mathrm{n} \pi \pm \alpha, \mathrm{n} \in \mathbb{I}\end{array}\end{aligned}$

$\begin{aligned} & \text { 3. } \tan \theta=\tan \alpha \\ & \text { Given, } \tan \theta=\tan \alpha \\ & \Rightarrow \quad \frac{\sin \theta}{\cos \theta}=\frac{\sin \alpha}{\cos \alpha} \\ & \Rightarrow \quad \sin \theta \cos \alpha-\cos \theta \sin \alpha=0 \\ & \Rightarrow \quad \sin (\theta-\alpha)=0 \\ & \Rightarrow \quad \theta-\alpha=\mathrm{n} \pi \\ & \Rightarrow \quad \theta=\mathrm{n} \pi+\alpha \text {, where } \mathrm{n} \in \mathbb{I}\end{aligned}$

General Solution of some Standard Equations (Part 2)

General Solution of some Standard Equations (Part 2)

$
\begin{aligned}
& \text { 4. } \sin ^2 \boldsymbol{\theta}=\sin ^2 \mathbf{a} \\
& \Rightarrow \quad \sin ^2 \theta=\sin ^2 \dot{\alpha} \\
& \Rightarrow \quad \sin (\theta+\alpha) \sin (\theta-\alpha)=0 \\
& \because \text { we are using the identity, } \sin (\mathrm{A}+\mathrm{B}) \sin (\mathrm{A}-\mathrm{B})=\sin ^2 \mathrm{~A}-\sin ^2 \mathrm{~B} \\
& \Rightarrow \sin (\theta+\alpha)=0 \text { or } \sin (\theta-\alpha)=0 \\
& \Rightarrow \theta+\alpha=n \pi \text { or } \theta-\alpha=n \pi, n \in \mathbb{I} \\
& \Rightarrow \theta=n \pi \pm \alpha \in \mathbb{I}
\end{aligned}
$
Note:
The general solution of the equation $\cos ^2 \theta=\cos ^2 \alpha$ and $\tan ^2 \theta=\tan ^2 \alpha$ is also $\theta=\mathrm{n} \pi \pm \alpha \in \mathbb{I}$.

Important Points to remember while solving trigonometric equations

Important Points to remember while solving trigonometric equations

While solving a trigonometric equation, squaring the equation at any step should be avoided as much as possible. If squaring is necessary, check the solution for values that do not satisfy the original equation. 

Never cancel terms containing unknown terms on the two sides which are in the product. It may cause the loss of a genuine solution.

The answer should not contain such values of angles which make any of the terms undefined or infinite. 

Domain should not change while simplifying the equation. If it changes, necessary corrections must be made.

Check that the denominator is not zero at any stage while solving the equations.

Example:

Solve  $\sin x+\cos x=1$

Solution:

Given equation is, $\sin x+\cos x=1$
If we square both sides,

$
\begin{aligned}
& (\sin \mathrm{x}+\cos \mathrm{x})^2=1^2 \\
& \Rightarrow \quad \sin ^2 \mathrm{x}+2 \sin \mathrm{x} \cos \mathrm{x}+\cos ^2 \mathrm{x}=1 \\
& \Rightarrow \quad \sin 2 \mathrm{x}=0 \\
& \Rightarrow \quad 2 \mathrm{x}=\mathrm{n} \pi, \mathrm{n} \in \mathbb{I} \\
& \Rightarrow \quad \mathrm{x}=(\mathrm{n} \pi) / 2, \mathrm{n} \in \mathbb{I}
\end{aligned}
$
But for $n=2,6,10, \ldots$
$\sin x+\cos +=-1$ which contradicts the given equation.
Also for $n=3,7,11, \ldots$

$
\sin x+\cos x=-1
$
Hence only $n=0,4,8,12, \ldots$. and $n=1,5,9, \ldots$ satisfy the equation
Hence, the solution is $x=4 n \pi / 2=2 n \pi$ or $x=(4 n+1) \frac{\pi}{2}$

Study it with Videos

Trigonometric Equations
General Solution of some Standard Equations (Part 1)
General Solution of some Standard Equations (Part 2)

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Books

Reference Books

Trigonometric Equations

Mathematics for Joint Entrance Examination JEE (Advanced) : Trigonometry

Page No. : 4.1

Line : 1

General Solution of some Standard Equations (Part 1)

Mathematics for Joint Entrance Examination JEE (Advanced) : Trigonometry

Page No. : 4.4

Line : 42

E-books & Sample Papers

Get Answer to all your questions

Back to top