Amity University-Noida B.Tech Admissions 2026
Among top 100 Universities Globally in the Times Higher Education (THE) Interdisciplinary Science Rankings 2026
Domain and range of Inverse Trigonometric Function (Part 1) is considered one the most difficult concept.
60 Questions around this concept.
Let $f:(-1,1) \rightarrow B$, be a function defined by $f(x)=\tan ^{-1}\left(\frac{2 x}{1-x^2}\right)$ then $f$ is both one-one and onto when $B$ is the interval
What is the solution for $\tan ^{-1}x>\pi / 4$ ?
Number of solutions of x where its satisfy $\left(\sin ^{-1} x\right)^2-2 \sin ^{-1} x+1 \leq 0$
New: JEE Main 2026 Answer Key Out; Download Now
JEE Main 2026 Tools: Rank Predictor | College Predictor
Latest: JEE Main 2026 Session 2 Registration Starts; Apply Now
$-\tan ^{-1}\left(\frac{\pi}{3}\right)=$
$\tan ^{-1}(-1)=$
Which of the following functions as the below graph?
$\sin ^{-1}\left(\frac{-\sqrt{3}}{2}\right)=$
The range of $\cos ^{-1}([x])$ is $\left(\left[\left.x\right|_{\text {represents Greatest Integer Function })}\right.\right.$
$\cot ^{-1}(\sqrt{3})=$
$Domain\, \, of \, \, \csc ^{-1}x\, \, is:$
Domain and range of Inverse Trigonometric Function (Part 1)
$y=\sin ^{-1}(x)$
The function is many one so it is not invertible. Now consider the small portion of the function
$\mathrm{y=\sin x,\;x\in\left [ -\frac{\pi}{2},\frac{\pi}{2}\right ]\;\;and\;\;y\in[-1,1]}$
Which is strictly increasing, Hence, one-one and inverse is $y=\sin ^{-1}(x)$
$\mathrm{Domain\;is\;[-1,1]\;\;and\;\;Range\;\;is\;\;\left [ \frac{-\pi}{2},\frac{\pi}{2} \right ]}$
$y=\cos ^{-1}(x)$

$\mathrm{Domain\;is\;[-1,1]\;\;and\;\;Range\;\;is\;\;\left [ 0,\pi\right ]}$
$y=\tan ^{-1}(x)$
$\mathrm{Domain\;is\;\mathbb{R}\;\;and\;\;Range\;\;is\;\;\left ( \frac{-\pi}{2},\frac{\pi}{2} \right )}$
Domain and range of Inverse Trigonometric Function (Part 2)
$y=\cot ^{-1}(x)$

$\mathrm{Domain\;is\;\mathbb{R}\;\;and\;\;Range\;\;is\;\; ( 0,\pi)}$
$y=\sec ^{-1}(x)$

$\mathrm{Domain\;is\;\mathbb{R}-(-1,1)\;\;and\;\;Range\;\;is\;\;[0,\pi]-\left \{ \frac{\pi}{2} \right \}}$
$y=\operatorname{cosec}^{-1}(x)$

$\mathrm{Domain\;is\;\mathbb{R}-(-1,1)\;\;and\;\;Range\;\;is\;\;\left [- \frac{\pi}{2},\frac{\pi}{2} \right ]-\left \{ 0 \right \}}$
"Stay in the loop. Receive exam news, study resources, and expert advice!"
