JEE Main Answer Key 2025 (Released) - Download Jan 22, 23 Unofficial Answer Key PDF

Domain and Range of Trigonometric Functions - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • Domain and range of Inverse Trigonometric Function (Part 1) is considered one the most difficult concept.

  • 41 Questions around this concept.

Solve by difficulty

Let $f:(-1,1) \rightarrow B$, be a function defined by $f(x)=\tan ^{-1}\left(\frac{2 x}{1-x^2}\right)$ then $f$ is both one-one and onto when $B$ is the interval

$-\tan ^{-1}\left(\frac{\pi}{3}\right)=$

$\tan ^{-1}(-1)=$

Which of the following functions as the below graph?

$\cot ^{-1}(\sqrt{3})=$

$Domain\, \, of \, \, \csc ^{-1}x\, \, is:$

$Range \, of\, \sec^{-1}x\,\, is:$

UPES B.Tech Admissions 2025

Ranked #42 among Engineering colleges in India by NIRF | Highest CTC 50 LPA , 100% Placements

Amrita Vishwa Vidyapeetham | B.Tech Admissions 2025

Recognized as Institute of Eminence by Govt. of India | NAAC ‘A++’ Grade | Upto 75% Scholarships | Last Date to Apply: 25th Jan

Concepts Covered - 2

Domain and range of Inverse Trigonometric Function (Part 1)

Domain and range of Inverse Trigonometric Function (Part 1)

$y=\sin ^{-1}(x)$

The function is many one so it is not invertible. Now consider the small portion of the function

 $\mathrm{y=\sin x,\;x\in\left [ -\frac{\pi}{2},\frac{\pi}{2}\right ]\;\;and\;\;y\in[-1,1]}$

             

Which is strictly increasing, Hence, one-one and inverse is $y=\sin ^{-1}(x)$

$\mathrm{Domain\;is\;[-1,1]\;\;and\;\;Range\;\;is\;\;\left [ \frac{-\pi}{2},\frac{\pi}{2} \right ]}$

$y=\cos ^{-1}(x)$

$\mathrm{Domain\;is\;[-1,1]\;\;and\;\;Range\;\;is\;\;\left [ 0,\pi\right ]}$

$y=\tan ^{-1}(x)$

 

$\mathrm{Domain\;is\;\mathbb{R}\;\;and\;\;Range\;\;is\;\;\left ( \frac{-\pi}{2},\frac{\pi}{2} \right )}$

Domain and range of Inverse Trigonometric Function (Part 2)

Domain and range of Inverse Trigonometric Function (Part 2)

$y=\cot ^{-1}(x)$


 

$\mathrm{Domain\;is\;\mathbb{R}\;\;and\;\;Range\;\;is\;\; ( 0,\pi)}$

$y=\sec ^{-1}(x)$

$\mathrm{Domain\;is\;\mathbb{R}-(-1,1)\;\;and\;\;Range\;\;is\;\;[0,\pi]-\left \{ \frac{\pi}{2} \right \}}$

$y=\operatorname{cosec}^{-1}(x)$


 

$\mathrm{Domain\;is\;\mathbb{R}-(-1,1)\;\;and\;\;Range\;\;is\;\;\left [- \frac{\pi}{2},\frac{\pi}{2} \right ]-\left \{ 0 \right \}}$

Study it with Videos

Domain and range of Inverse Trigonometric Function (Part 1)
Domain and range of Inverse Trigonometric Function (Part 2)

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Books

Reference Books

Domain and range of Inverse Trigonometric Function (Part 1)

Mathematics for Joint Entrance Examination JEE (Advanced) : Trigonometry

Page No. : 7.2

Line : 10

Domain and range of Inverse Trigonometric Function (Part 2)

Mathematics for Joint Entrance Examination JEE (Advanced) : Trigonometry

Page No. : 7.2

Line : 11

E-books & Sample Papers

Get Answer to all your questions

Back to top