Download Careers360 App
NIRF Engineering Ranking 2025: Complete List of Top Colleges

Domain and Range of Trigonometric Functions - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • Domain and range of Inverse Trigonometric Function (Part 1) is considered one the most difficult concept.

  • 60 Questions around this concept.

Solve by difficulty

Let $f:(-1,1) \rightarrow B$, be a function defined by $f(x)=\tan ^{-1}\left(\frac{2 x}{1-x^2}\right)$ then $f$ is both one-one and onto when $B$ is the interval

What is the solution for $\tan ^{-1}x>\pi / 4$ ?

Number of solutions of x where its satisfy $\left(\sin ^{-1} x\right)^2-2 \sin ^{-1} x+1 \leq 0$

$-\tan ^{-1}\left(\frac{\pi}{3}\right)=$

$\tan ^{-1}(-1)=$

Which of the following functions as the below graph?

$\sin ^{-1}\left(\frac{-\sqrt{3}}{2}\right)=$

GNA University B.Tech Admissions 2025

100% Placement Assistance | Avail Merit Scholarships | Highest CTC 43 LPA

UPES B.Tech Admissions 2025

Ranked #42 among Engineering colleges in India by NIRF | Highest Package 1.3 CR , 100% Placements | Last Date to Apply: 30th July | Limited seats available in select program

The range of $\cos ^{-1}([x])$ is $\left(\left[\left.x\right|_{\text {represents Greatest Integer Function })}\right.\right.$

 

$\cot ^{-1}(\sqrt{3})=$

JEE Main 2026: Preparation Tips & Study Plan
Download the JEE Main 2026 Preparation Tips PDF to boost your exam strategy. Get expert insights on managing study material, focusing on key topics and high-weightage chapters.
Download EBook

$Domain\, \, of \, \, \csc ^{-1}x\, \, is:$

Concepts Covered - 2

Domain and range of Inverse Trigonometric Function (Part 1)

Domain and range of Inverse Trigonometric Function (Part 1)

$y=\sin ^{-1}(x)$

The function is many one so it is not invertible. Now consider the small portion of the function

 $\mathrm{y=\sin x,\;x\in\left [ -\frac{\pi}{2},\frac{\pi}{2}\right ]\;\;and\;\;y\in[-1,1]}$

             

Which is strictly increasing, Hence, one-one and inverse is $y=\sin ^{-1}(x)$

$\mathrm{Domain\;is\;[-1,1]\;\;and\;\;Range\;\;is\;\;\left [ \frac{-\pi}{2},\frac{\pi}{2} \right ]}$

$y=\cos ^{-1}(x)$

$\mathrm{Domain\;is\;[-1,1]\;\;and\;\;Range\;\;is\;\;\left [ 0,\pi\right ]}$

$y=\tan ^{-1}(x)$

 

$\mathrm{Domain\;is\;\mathbb{R}\;\;and\;\;Range\;\;is\;\;\left ( \frac{-\pi}{2},\frac{\pi}{2} \right )}$

Domain and range of Inverse Trigonometric Function (Part 2)

Domain and range of Inverse Trigonometric Function (Part 2)

$y=\cot ^{-1}(x)$


 

$\mathrm{Domain\;is\;\mathbb{R}\;\;and\;\;Range\;\;is\;\; ( 0,\pi)}$

$y=\sec ^{-1}(x)$

$\mathrm{Domain\;is\;\mathbb{R}-(-1,1)\;\;and\;\;Range\;\;is\;\;[0,\pi]-\left \{ \frac{\pi}{2} \right \}}$

$y=\operatorname{cosec}^{-1}(x)$


 

$\mathrm{Domain\;is\;\mathbb{R}-(-1,1)\;\;and\;\;Range\;\;is\;\;\left [- \frac{\pi}{2},\frac{\pi}{2} \right ]-\left \{ 0 \right \}}$

Study it with Videos

Domain and range of Inverse Trigonometric Function (Part 1)
Domain and range of Inverse Trigonometric Function (Part 2)

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Books

Reference Books

Domain and range of Inverse Trigonometric Function (Part 1)

Mathematics for Joint Entrance Examination JEE (Advanced) : Trigonometry

Page No. : 7.2

Line : 10

Domain and range of Inverse Trigonometric Function (Part 2)

Mathematics for Joint Entrance Examination JEE (Advanced) : Trigonometry

Page No. : 7.2

Line : 11

E-books & Sample Papers

Get Answer to all your questions

Back to top