JEE Main Registration 2025 Closed, What is Next, Updates

Domain and Range of Trigonometric Functions - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • Domain and range of Inverse Trigonometric Function (Part 1) is considered one the most difficult concept.

  • 35 Questions around this concept.

Solve by difficulty

The largest interval lying in \left ( \frac{-\pi }{2} ,\frac{\pi }{2}\right ) for which the function,

f\left ( x \right )= 4^{-x^{2}}+\cos ^{-1}\left ( \frac{x}{2} -1\right )+\log \left ( \cos x \right ), is defined, is

Let f:\left ( -1,1 \right )\rightarrow B, be a function defined by f\left ( x \right )= \tan ^{-1}\left ( \frac{2x}{1-x^{2}} \right )

then f is both one­-one and onto when B is the interval

Concepts Covered - 2

Domain and range of Inverse Trigonometric Function (Part 1)

Domain and range of Inverse Trigonometric Function (Part 1)

y = sin-1(x)

The function y = sin(x) is many one so it is not invertible. Now consider the small portion of the function

 \mathrm{y=\sin x,\;x\in\left [ -\frac{\pi}{2},\frac{\pi}{2}\right ]\;\;and\;\;y\in[-1,1]}

 

             


 

Which is strictly increasing, Hence, one-one and inverse is y = sin-1(x)

 

\mathrm{Domain\;is\;[-1,1]\;\;and\;\;Range\;\;is\;\;\left [ \frac{-\pi}{2},\frac{\pi}{2} \right ]}


 

y = cos-1(x)

 

                                                    \mathrm{Domain\;is\;[-1,1]\;\;and\;\;Range\;\;is\;\;\left [ 0,\pi\right ]}
 

y = tan-1(x)

 

 

\mathrm{Domain\;is\;\mathbb{R}\;\;and\;\;Range\;\;is\;\;\left ( \frac{-\pi}{2},\frac{\pi}{2} \right )}

Domain and range of Inverse Trigonometric Function (Part 2)

Domain and range of Inverse Trigonometric Function (Part 2)

y = cot-1(x)


 


 

\mathrm{Domain\;is\;\mathbb{R}\;\;and\;\;Range\;\;is\;\; ( 0,\pi)}

 

y = sec-1(x)

 


 

\mathrm{Domain\;is\;\mathbb{R}-(-1,1)\;\;and\;\;Range\;\;is\;\;[0,\pi]-\left \{ \frac{\pi}{2} \right \}}


 

y = cosec-1(x)

 


 

\mathrm{Domain\;is\;\mathbb{R}-(-1,1)\;\;and\;\;Range\;\;is\;\;\left [- \frac{\pi}{2},\frac{\pi}{2} \right ]-\left \{ 0 \right \}}

Study it with Videos

Domain and range of Inverse Trigonometric Function (Part 1)
Domain and range of Inverse Trigonometric Function (Part 2)

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Books

Reference Books

Domain and range of Inverse Trigonometric Function (Part 1)

Mathematics for Joint Entrance Examination JEE (Advanced) : Trigonometry

Page No. : 7.2

Line : 10

Domain and range of Inverse Trigonometric Function (Part 2)

Mathematics for Joint Entrance Examination JEE (Advanced) : Trigonometry

Page No. : 7.2

Line : 11

E-books & Sample Papers

Get Answer to all your questions

Back to top