Amity University-Noida B.Tech Admissions 2026
Among top 100 Universities Globally in the Times Higher Education (THE) Interdisciplinary Science Rankings 2026
Domain and range of Inverse Trigonometric Function (Part 1) is considered one the most difficult concept.
60 Questions around this concept.
Let $f:(-1,1) \rightarrow B$, be a function defined by $f(x)=\tan ^{-1}\left(\frac{2 x}{1-x^2}\right)$ then $f$ is both one-one and onto when $B$ is the interval
What is the solution for $\tan ^{-1}x>\pi / 4$ ?
Number of solutions of x where its satisfy $\left(\sin ^{-1} x\right)^2-2 \sin ^{-1} x+1 \leq 0$
Latest: Free All-India JEE Main 2026 Mock Test - Attempt Now
JEE Main Sample Papers: Physics | Chemistry | Maths | Top 30 Repeated Questions
JEE Main QP & Mock: Previous 10 Year Questions | Chapter Wise PYQs | Mock test Series
JEE Main Most Scoring Concept: January 2025 Session | April 2025 Session | Overall
$-\tan ^{-1}\left(\frac{\pi}{3}\right)=$
$\tan ^{-1}(-1)=$
Which of the following functions as the below graph?
$\sin ^{-1}\left(\frac{-\sqrt{3}}{2}\right)=$
The range of $\cos ^{-1}([x])$ is $\left(\left[\left.x\right|_{\text {represents Greatest Integer Function })}\right.\right.$
$\cot ^{-1}(\sqrt{3})=$
$Domain\, \, of \, \, \csc ^{-1}x\, \, is:$
Domain and range of Inverse Trigonometric Function (Part 1)
$y=\sin ^{-1}(x)$
The function is many one so it is not invertible. Now consider the small portion of the function
$\mathrm{y=\sin x,\;x\in\left [ -\frac{\pi}{2},\frac{\pi}{2}\right ]\;\;and\;\;y\in[-1,1]}$
Which is strictly increasing, Hence, one-one and inverse is $y=\sin ^{-1}(x)$
$\mathrm{Domain\;is\;[-1,1]\;\;and\;\;Range\;\;is\;\;\left [ \frac{-\pi}{2},\frac{\pi}{2} \right ]}$
$y=\cos ^{-1}(x)$

$\mathrm{Domain\;is\;[-1,1]\;\;and\;\;Range\;\;is\;\;\left [ 0,\pi\right ]}$
$y=\tan ^{-1}(x)$
$\mathrm{Domain\;is\;\mathbb{R}\;\;and\;\;Range\;\;is\;\;\left ( \frac{-\pi}{2},\frac{\pi}{2} \right )}$
Domain and range of Inverse Trigonometric Function (Part 2)
$y=\cot ^{-1}(x)$

$\mathrm{Domain\;is\;\mathbb{R}\;\;and\;\;Range\;\;is\;\; ( 0,\pi)}$
$y=\sec ^{-1}(x)$

$\mathrm{Domain\;is\;\mathbb{R}-(-1,1)\;\;and\;\;Range\;\;is\;\;[0,\pi]-\left \{ \frac{\pi}{2} \right \}}$
$y=\operatorname{cosec}^{-1}(x)$

$\mathrm{Domain\;is\;\mathbb{R}-(-1,1)\;\;and\;\;Range\;\;is\;\;\left [- \frac{\pi}{2},\frac{\pi}{2} \right ]-\left \{ 0 \right \}}$
"Stay in the loop. Receive exam news, study resources, and expert advice!"
