UPES B.Tech Admissions 2025
Ranked #42 among Engineering colleges in India by NIRF | Highest CTC 50 LPA , 100% Placements
Domain and range of Inverse Trigonometric Function (Part 1) is considered one the most difficult concept.
41 Questions around this concept.
Let $f:(-1,1) \rightarrow B$, be a function defined by $f(x)=\tan ^{-1}\left(\frac{2 x}{1-x^2}\right)$ then $f$ is both one-one and onto when $B$ is the interval
$-\tan ^{-1}\left(\frac{\pi}{3}\right)=$
$\tan ^{-1}(-1)=$
JEE Main 2025: Rank Predictor | Admit Card Link | January Session Exam Analysis
JEE Main 2025: Memory Based Question: Jan 24- Shift 1 | Jan 23- Shift 1 | Shift 2 | Jan 22- Shift 1 | Shift 2
JEE Main 2025: High Scoring Topics | Sample Papers | Mock Tests | PYQs
Which of the following functions as the below graph?
$\cot ^{-1}(\sqrt{3})=$
$Domain\, \, of \, \, \csc ^{-1}x\, \, is:$
$Range \, of\, \sec^{-1}x\,\, is:$
Ranked #42 among Engineering colleges in India by NIRF | Highest CTC 50 LPA , 100% Placements
Recognized as Institute of Eminence by Govt. of India | NAAC ‘A++’ Grade | Upto 75% Scholarships | Last Date to Apply: 25th Jan
Domain and range of Inverse Trigonometric Function (Part 1)
$y=\sin ^{-1}(x)$
The function is many one so it is not invertible. Now consider the small portion of the function
$\mathrm{y=\sin x,\;x\in\left [ -\frac{\pi}{2},\frac{\pi}{2}\right ]\;\;and\;\;y\in[-1,1]}$
Which is strictly increasing, Hence, one-one and inverse is $y=\sin ^{-1}(x)$
$\mathrm{Domain\;is\;[-1,1]\;\;and\;\;Range\;\;is\;\;\left [ \frac{-\pi}{2},\frac{\pi}{2} \right ]}$
$y=\cos ^{-1}(x)$
$\mathrm{Domain\;is\;[-1,1]\;\;and\;\;Range\;\;is\;\;\left [ 0,\pi\right ]}$
$y=\tan ^{-1}(x)$
$\mathrm{Domain\;is\;\mathbb{R}\;\;and\;\;Range\;\;is\;\;\left ( \frac{-\pi}{2},\frac{\pi}{2} \right )}$
Domain and range of Inverse Trigonometric Function (Part 2)
$y=\cot ^{-1}(x)$
$\mathrm{Domain\;is\;\mathbb{R}\;\;and\;\;Range\;\;is\;\; ( 0,\pi)}$
$y=\sec ^{-1}(x)$
$\mathrm{Domain\;is\;\mathbb{R}-(-1,1)\;\;and\;\;Range\;\;is\;\;[0,\pi]-\left \{ \frac{\pi}{2} \right \}}$
$y=\operatorname{cosec}^{-1}(x)$
$\mathrm{Domain\;is\;\mathbb{R}-(-1,1)\;\;and\;\;Range\;\;is\;\;\left [- \frac{\pi}{2},\frac{\pi}{2} \right ]-\left \{ 0 \right \}}$
"Stay in the loop. Receive exam news, study resources, and expert advice!"