UPES B.Tech Admissions 2025
ApplyRanked #42 among Engineering colleges in India by NIRF | Highest CTC 50 LPA , 100% Placements
Domain and range of Inverse Trigonometric Function (Part 1) is considered one the most difficult concept.
33 Questions around this concept.
The largest interval lying in for which the function,
is defined, is
Let be a function defined by
then is both one-one and onto when is the interval
Domain and range of Inverse Trigonometric Function (Part 1)
$y=\sin ^{-1}(x)$
The function is many one so it is not invertible. Now consider the small portion of the function
$\mathrm{y=\sin x,\;x\in\left [ -\frac{\pi}{2},\frac{\pi}{2}\right ]\;\;and\;\;y\in[-1,1]}$
Which is strictly increasing, Hence, one-one and inverse is $y=\sin ^{-1}(x)$
$\mathrm{Domain\;is\;[-1,1]\;\;and\;\;Range\;\;is\;\;\left [ \frac{-\pi}{2},\frac{\pi}{2} \right ]}$
$y=\cos ^{-1}(x)$
$\mathrm{Domain\;is\;[-1,1]\;\;and\;\;Range\;\;is\;\;\left [ 0,\pi\right ]}$
$y=\tan ^{-1}(x)$
$\mathrm{Domain\;is\;\mathbb{R}\;\;and\;\;Range\;\;is\;\;\left ( \frac{-\pi}{2},\frac{\pi}{2} \right )}$
Domain and range of Inverse Trigonometric Function (Part 2)
$y=\cot ^{-1}(x)$
$\mathrm{Domain\;is\;\mathbb{R}\;\;and\;\;Range\;\;is\;\; ( 0,\pi)}$
$y=\sec ^{-1}(x)$
$\mathrm{Domain\;is\;\mathbb{R}-(-1,1)\;\;and\;\;Range\;\;is\;\;[0,\pi]-\left \{ \frac{\pi}{2} \right \}}$
$y=\operatorname{cosec}^{-1}(x)$
$\mathrm{Domain\;is\;\mathbb{R}-(-1,1)\;\;and\;\;Range\;\;is\;\;\left [- \frac{\pi}{2},\frac{\pi}{2} \right ]-\left \{ 0 \right \}}$
"Stay in the loop. Receive exam news, study resources, and expert advice!"