18 Questions around this concept.
The value of $\sum_{r=0}^{n}(r+1)^{n}C_{r}$ equals
Find the value of .
If be binomial coefficients in the expansion of
:
Let denotes the binomial coefficient of
in the expansion of
. If
then
is equal to _________-
JEE Main 2026: Preparation Tips & Study Plan | Previous 10 Year Questions
JEE Main 2026: 100 Days Study Plan | High Scoring Chapters and Topics | Preparation Tips
JEE Main 2025 Most Scoring Concept: January Session | April Session
Don't Miss: Best Public Engineering Colleges
If ${ }^{\mathrm{n}} \mathrm{C}_0,{ }^{\mathrm{n}} \mathrm{C}_1,{ }^{\mathrm{n}} \mathrm{C}_2, \cdots,{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{n}}$ are the binomial coefficients, then the expression ${ }^{\mathrm{n}} \mathrm{C}_0+2 \cdot{ }^{\mathrm{n}} \mathrm{C}_1+3 \cdot{ }^{\mathrm{n}} \mathrm{C}_2+\ldots+\mathrm{n} \cdot{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{n}}$ equals
If $f(x)=(2011+x)^n$, where $\boldsymbol{x}$ is a real variable and $\mathbf{n}$ is a positive integer, then the value of $
f(0)+f^{\prime}(0)+\frac{f^{\prime \prime}(0)}{2!}+\ldots+\frac{f^{(n-1)}(0)}{(n-1)!}
$ is
1. To get the value of $C_1+2 C_2+3 C_3+\ldots \ldots \ldots+n C_n$
We know, $(1+x)^n=C_0+C_1 x+C_2 x^2+\ldots \ldots+C_r x^r+\ldots \ldots+C_n x^n$
Differentiate both sides concerning the x we get,
$
n(1+x)^{n1}=0+C_1+2 C_2 x+3 C_3 x^2+\ldots .+n C_n x^{n1}
$
Put $x=1$ we get,
$
n \cdot 2^{n1}=C_1+2 C_2+3 C_3+\ldots \ldots+n C_n
$
Hence, $C_1+2 C_2+3 C_3+\ldots \ldots+n C_n=n .2^{n1}$
Note:
This result can also be written as $\sum_{r=0}^n r .{ }^n C_r=\sum_{r=1}^n r .{ }^n C_r=n \cdot 2^{n1}$
Students are advised to remember this result
Example1
The value of $C_0+2 C_1+3 C_2+\ldots \ldots+(n+1) C_n$ is
Method 1: Differentiation
$
x(1+x)^n=C_0 x+C_1 x^2+C_2 x^3+\ldots \ldots+C_n x^{n+1}
$
Differentiate both sides concerning the x we get,
$
x \cdot n(1+x)^{n1}+(1+x)^n \cdot 1=C_0+2 C_1 x+3 C_2 x^2+\ldots \ldots+(n+1) C_n x^n
$
Put $x=1$ we get,
$
\begin{aligned}
& n(2)^{n1}+2^n=C_o+2 C_1+3 C_2+\ldots \ldots+(n+1) C_n \\
& C_0+2 C_1+3 C_2+\ldots \ldots+(n+1) C_n=(n+2) 2^{n1}
\end{aligned}
$
Method 2: Sigma method
$
\begin{aligned}
& C_0+2 C_1+3 C_2+\ldots \ldots+(n+1) C_n \\
& =\sum_{r=0}^n(r+1) \cdot{ }^n C_r \\
& =\sum_{r=0}^n r .{ }^n C_r+\sum_{r=0}^n{ }^n C_r \\
& =n \cdot 2^{n1}+2^n \quad \text { (Using result derived in previous section) } \\
& =2^{n1}(n+2)
\end{aligned}
$
Example 2
$
C_0+3 C_1+5 C_2+\ldots+(2 n+1) C_n=?
$
Method 1: Differentiation
The given series is
$
(1+x)^n=C_0+C_1 x+C_2 x^2+\ldots+C_n x^n
$
Now, replacing $x$ by $x^2$, we get
$
\left(1+x^2\right)^n=C_0+C_1 x^2+C_2 x^4+\ldots+C_n x^{2 n}
$
On multiplying both sides by $x^1$, we get
$
x\left(1+x^2\right)^n=C_0 x+C_1 x^3+C_2 x^5+\ldots+C_n x^{2 n+1}
$
On differentiating both sides w.r.t x
$
x \cdot n\left(1+x^2\right)^{n1} \cdot 2 x+\left(1+x^2\right)^n \cdot 1=C_0+3 C_1 x^2+5 C_2 x^4+\ldots+(2 n+1) C_n x^{2 n}
$
Putting $x=1$, we get
$
n \cdot 2^{n1} \cdot 2+2^n=C_0+3 C_1+5 C_2+\ldots+(2 n+1) C_n
$
Hence, $C_0+3 C_1+5 C_2+\ldots+(2 n+1) C_n=(n+1) 2^n$.
Method 2: Sigma method
$
\begin{aligned}
& C_0+3 C_1+5 C_2+\ldots+(2 n+1) C_n \\
& =\sum_{r=0}^n(2 r+1) \cdot{ }^n C_r \\
& =2 \sum_{r=0}^n r \cdot{ }^n C_r+\sum_{r=0}^n{ }^n C_r \\
& =2 \cdot n \cdot 2^{n1}+2^n \\
& =(n+1) \cdot 2^n
\end{aligned}
$
Important Results for Sigma Method
1. $\sum_{r=0}^n{ }^n C_r=2^n$
2. $\sum_{r=0}^n r .{ }^n C_r=\sum_{r=1}^n r .{ }^n C_r=n .2^{n1}$
$\sum_{\text {3. }}^{n=0} r^2 \cdot{ }^n C_r=\sum_{r=1}^n r^2 \cdot{ }^n C_r=n(n+1) 2^{n2}$
"Stay in the loop. Receive exam news, study resources, and expert advice!"