JEE Main Official Answer Key 2025 Release Date Soon - How to Download PDF

Cross product - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • Vector (or Cross) Product of Two Vectors is considered one the most difficult concept.

  • Vector Product in Terms of Components is considered one of the most asked concept.

  • 79 Questions around this concept.

Solve by difficulty

Let \dpi{100} \vec{u}=\hat{i}+\hat{j},\; \; \vec{v}=\hat{i}-\hat{j} and \vec{w}=\hat{i}+2\hat{j}+3\hat{k}. If \hat{n} is a unit vector such that \vec{u}\cdot \hat{n}=0 and \vec{v}\cdot \hat{n}=0, then \left |\vec{w}\cdot \widehat{n} \right |  is equal to:

If \left | \vec{a} \right |=4,\left | \vec{b} \right |=2,  and the angle between \vec{a}\; \; and \; \; \vec{b} \; \; is \; \; \frac{\pi }{6}\; then\; \; (\vec{a}\times \vec{b} )^{2} is equal to

\vec{a}=3\hat{i}-5\hat{j}\;\; and\;\; \vec{b}=6\hat{i}+3\hat{j}  are two vectors and \vec{c} is a vector such that \vec{c}=\vec{a}\times \vec{b} then \left | \vec{a} \right |:\left |\vec{b} \right |:\left | \vec{c} \right |=| \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} +\vec{c} \cdot \vec{a} |

JEE Main 2025: Rank Predictor |  College Predictor

JEE Main 2025 Memory Based Question: Jan 29- Shift 1 | shift-2 | Jan 28- Shift 1 Shift-2 | Jan 22, 23 & 24 (Shift 1 & 2)

JEE Main 2025: High Scoring Topics | Sample Papers | Mock Tests | PYQs

Let the position vector S of point A and B be $\hat{i}+\widehat{j}+\widehat{k}$ and $\widehat{2 i}-\widehat{j}-\widehat{3 k}$ respectively. A point 'p' divides the line segment AB intervally in the ratio $\lambda: 1(\lambda, 0)$ if $O$ is the origin and $\overrightarrow{O B} \cdot \overrightarrow{O P}-3|\overrightarrow{O A} \times \overrightarrow{O P}|^2=6$ then $\lambda$ is equal to $\qquad$

Let $\vec{a}$ and $\vec{b}$ be two vectors such that $|\vec{b}|=1$ and $|\vec{b} \times \vec{a}|=2$. Then $|(\vec{b} \times \vec{a})-\vec{b}|^2$ is equal to

Let $\overrightarrow{\mathrm{a}}=-5 \hat{\mathrm{i}}+\hat{\mathrm{j}}-3 \hat{\mathrm{k}}, \overrightarrow{\mathrm{b}}=\hat{\mathrm{i}}+2 \hat{\mathrm{j}}-4 \hat{\mathrm{k}}$ and $\overrightarrow{\mathrm{c}}=(((\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}) \times \hat{\mathrm{i}}) \times \hat{\mathrm{i}}) \times \hat{\mathrm{i}}$. Then $\overrightarrow{\mathrm{c}} \cdot(-\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}})$ is equal to :

 Vector product is :

Amrita Vishwa Vidyapeetham | B.Tech Admissions 2025

Recognized as Institute of Eminence by Govt. of India | NAAC ‘A++’ Grade | Upto 75% Scholarships | Extended Application Deadline: 30th Jan

UPES B.Tech Admissions 2025

Ranked #42 among Engineering colleges in India by NIRF | Highest CTC 50 LPA , 100% Placements

$(3\hat{i}\times 9\hat{j})+(7\hat{k}\times 3\hat{k})=$

$\hat{i}\times (2\hat{i}\times \hat{j})$  is along which axis :

JEE Main Exam's High Scoring Chapters and Topics
This free eBook covers JEE Main important chapters & topics to study just 40% of the syllabus and score up to 100% marks in the examination.
Download EBook

$5 \hat{i} \times 4 \hat{j}=?$

Concepts Covered - 2

Vector (or Cross) Product of Two Vectors

The vector product of two nonzero vectors $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$, is denoted by $\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}$ and defined as,
$
\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}=|\overrightarrow{\mathbf{a}}||\overrightarrow{\mathbf{b}}| \sin \theta \hat{\mathbf{n}}
$
where $\theta$ is the angle between $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}, 0 \leq \theta \leq \pi$ and $\hat{\mathbf{n}}$ is a unit vector perpendicular to both $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$, such that $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}$ and $\hat{\mathbf{n}}$ form a right hand system.

             

Observe that, the direction of $\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}$ is opposite to that of $\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{a}}$ as shown in the figure.
i.e. $\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}=-\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}$

Properties of Vector Product

1. $\vec{a} \times \vec{b}$ is a vector.
2. Let $\vec{a}$ and $\vec{b}$ be two nonzero vectors. Then $\vec{a} \times \vec{b}=\overrightarrow{0}$ if and only if $\vec{a}$ and $\vec{b}$ are parallel (or collinear) to each other, i.e.,
$
\vec{a} \times \vec{b}=\overrightarrow{0} \Leftrightarrow \vec{a} \| \vec{b}
$

In particular, $\vec{a} \times \vec{a}=\overrightarrow{0}$ and $\vec{a} \times(-\vec{a})=\overrightarrow{0}$, since in the first situation, $\theta=0$ and in the second one, $\theta=\pi$.
3. If $\theta=\frac{\pi}{2}$, then $\vec{a} \times \vec{b}=|\vec{a}||\vec{b}|$.

4. From the property 2 . and 3 .
$
\begin{aligned}
& \hat{i} \times \hat{i}=\hat{j} \times \hat{j}=\hat{k} \times \hat{k}=\overrightarrow{0} \\
& \hat{i} \times \hat{j}=\hat{k}, \quad \hat{j} \times \hat{k}=\hat{i}, \quad \hat{k} \times \hat{i}=\hat{j} \\
& \text { and also, } \\
& \hat{j} \times \hat{i}=-\hat{k}, \quad \hat{k} \times \hat{j}=-\hat{i} \text { and } \quad \hat{i} \times \hat{k}=-\hat{j}
\end{aligned}
$
5. Vector product is not associative,
$
\text { i.e. } \quad \vec{a} \times \vec{b} \neq \vec{b} \times \vec{a}
$
6. If $\vec{a}$ and $\vec{b}$ are two vectors and $m$ is a scalar, then
$
m \vec{a} \times \vec{b}=m(\vec{a} \times \vec{b})=\vec{a} \times m \vec{b}
$
7. If $\vec{a}$ and $\vec{b}$ are two vectors and $m, n$ are scalars, then $m \vec{a} \times n \vec{b}=m n(\vec{a} \times \vec{b})=m(n \vec{a} \times \vec{b})=n(m \vec{a} \times \vec{b})$
8. For any three vectors $\vec{a}, \vec{b}$ and $\vec{c}$, we have
(i) $\vec{a} \times(\vec{b}+\vec{c})=\vec{a} \times \vec{b}+\vec{a} \times \vec{c}$

(ii) $\vec{a} \times(\vec{b}-\vec{c})=\vec{a} \times \vec{b}-\vec{a} \times \vec{c}$                              

 

 

 

                   

 

Vector Product in Terms of Components

If $\overrightarrow{\mathbf{a}}=a_1 \hat{\mathbf{i}}+a_2 \hat{\mathbf{j}}+a_3 \hat{\mathbf{k}}$ and $\overrightarrow{\mathbf{b}}=b_1 \hat{\mathbf{i}}+b_2 \hat{\mathbf{j}}+b_3 \hat{\mathbf{k}}$, then their cross product given by
$
\vec{a} \times \vec{b}=\left|\begin{array}{lll}
\hat{i} & \hat{j} & \hat{k} \\
a_1 & a_2 & a_3 \\
b_1 & b_2 & b_3
\end{array}\right|
$

Proof:

$
\begin{aligned}
\vec{a} \times \vec{b}= & \left(a_1 \hat{i}+a_2 \hat{j}+a_3 \hat{k}\right) \times\left(b_1 \hat{i}+b_2 \hat{j}+b_3 \hat{k}\right) \\
= & a_1 b_1(\hat{i} \times \hat{i})+a_1 b_2(\hat{i} \times \hat{j})+a_1 b_3(\hat{i} \times \hat{k})+a_2 b_1(\hat{j} \times \hat{i}) \\
& +a_2 b_2(\hat{j} \times \hat{j})+a_2 b_3(\hat{j} \times \hat{k})+a_3 b_1(\hat{k} \times \hat{i})+a_3 b_2(\hat{k} \times \hat{j})+a_3 b_3(\hat{k} \times \hat{k}) \\
= & a_1 b_2(\hat{i} \times \hat{j})-a_1 b_3(\hat{k} \times \hat{i})-a_2 b_1(\hat{i} \times \hat{j}) \\
& ++a_2 b_3(\hat{j} \times \hat{k})+a_3 b_1(\hat{k} \times \hat{i})-a_3 b_2(\hat{j} \times \hat{k})
\end{aligned}
$

Using the fact that,
$
\begin{aligned}
& \hat{i} \times \hat{i}=\hat{j} \times \hat{j}=\hat{k} \times \hat{k}=0 \\
\text { and, } & \hat{i} \times \hat{k}=-\hat{k} \times \hat{i}, \hat{j} \times \hat{i}=-\hat{i} \times \hat{j} \text { and } \hat{k} \times \hat{j}=-\hat{j} \times \hat{k} \\
= & a_1 b_2 \hat{k}-a_1 b_3 \hat{j}-a_2 b_1 \hat{k}+a_2 b_3 \hat{i}+a_3 b_1 \hat{j}-a_3 b_2 \hat{i} \\
(\text { as } \hat{i} \times & \hat{j}=\hat{k}, \hat{j} \times \hat{k}=\hat{i} \text { and } \times k+\hat{j}) \\
= & \left(a_2 b_3-a_3 b_2\right) \hat{i}-\left(a_1 b_3-a_3 b_1\right) \hat{j}+\left(a_1 b_2-a_2 b_1\right) \hat{k} \\
= & \left|\begin{array}{lll}
\hat{i} & \hat{j} & \hat{k} \\
a_1 & a_2 & a_3 \\
b_1 & b_2 & b_3
\end{array}\right|
\end{aligned}
$

The angle between Two Vectors

If $\Theta$ is the angle between the vectors $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$, then
$
\sin \theta=\frac{|\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}|}{|\overrightarrow{\mathbf{a}}||\overrightarrow{\mathbf{b}}|}
$

Vector perpendicular to the plane of two given vectors
The unit vector perpendicular to the plane of $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$ is $\frac{(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}})}{|\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}|}$.
Also note that $-\frac{(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}})}{|\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}|}$ is also a unit vector perpendicular to the plane of $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$.
Vectors of magnitude ' $\lambda$ ' perpendicular to the plane of $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$ are given by

Study it with Videos

Vector (or Cross) Product of Two Vectors
Vector Product in Terms of Components

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Books

Reference Books

Vector (or Cross) Product of Two Vectors

Mathematics for Joint Entrance Examination JEE (Advanced) : Vectors and 3D Geometry

Page No. : 3.20

Line : 1

Vector Product in Terms of Components

Mathematics for Joint Entrance Examination JEE (Advanced) : Vectors and 3D Geometry

Page No. : 3.20

Line : 1

E-books & Sample Papers

Get Answer to all your questions

Back to top