HBTU Kanpur JEE Mains Cutoff 2025: Expected Ranks and Trends

Calculation Of Necessary Force In Different Conditions On Rough Surface - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • 20 Questions around this concept.

Solve by difficulty

What is the minimum pushing force (in N) just to move the block?

Find the least force P which acting at an angle of $45^{\circ}$ with the horizontal, will slide a body weighing 6 kg along a rough horizontal surface. The coefficient of friction $\mu_s=\mu_k=\frac{1}{2}$. $\left(\right.$ use $\left.g=10 \mathrm{~m} / \mathrm{s}^2\right)$

A thin uniform, circular ring is rolling down an inclined plane of inclination 30° without slipping. Its linear acceleration along the inclined plane will be

Concepts Covered - 4

Calculation of Required force in different situations(1)
  • Case 1:- Minimum pulling force P at an angle α from the horizontal

By resolving P in the horizontal and vertical direction, we get:

    

where F is the friction force.

For the condition of equilibrium,

$
\begin{aligned}
& F=P \cos \alpha \\
& R=W-P \sin \alpha
\end{aligned}
$


By substituting these values in $F=\mu R$, we get:

$
\begin{aligned}
& P \cos \alpha=\mu(W-P \sin \alpha) \\
& U s e=\mu=\tan \theta \\
& \Rightarrow P \cos \alpha=\frac{\sin \theta}{\cos \theta}(W-P \sin \alpha) \\
& P=\frac{W \sin \theta}{\cos (\alpha-\theta)}
\end{aligned}
$
 

    where P is the pulling force,

R is a normal reaction

W is the weight

  • Case 2:- Minimum pushing force P at an angle α from the horizontal

By resolving P in the horizontal and vertical direction, we get:

       

      For the condition of equilibrium,

$
\begin{aligned}
& F=P \cos \alpha \\
& R=W+P \sin \alpha
\end{aligned}
$


By substituting these values in $F=\mu R$, we get:

$
\begin{aligned}
& P \cos \alpha=\mu(W+P \sin \alpha) \\
& U s e=\mu=\tan \theta \\
& \Rightarrow P \cos \alpha=\frac{\sin \theta}{\cos \theta}(W+P \sin \alpha) \\
& P=\frac{W \sin \theta}{\cos (\alpha+\theta)}
\end{aligned}
$
 

 

                      

 

Calculation of Required force in different situations(2)

 

  • Case 3:- Minimum pulling force P to move the body upwards on an inclined plane

        

          By resolving P in the direction of the plane and perpendicular to the plane, we get:

        

                     For the condition of equilibrium

$
\begin{aligned}
& R+P \sin \alpha=W \cos \lambda \Rightarrow R=W \cos \lambda-P \sin \alpha \\
& F+W \sin \lambda=P \cos \alpha \Rightarrow F=P \cos \alpha-W \sin \lambda
\end{aligned}
$


By substituting these values in $F=\mu R$, we get:

$
P=\frac{W \sin (\theta+\lambda)}{\cos (\alpha-\theta)}
$


Where $\theta$ is the angle of friction such that, $\mu=\tan \theta$

  • Case 4:- Minimum force to move a body in a downward direction along the surface of the inclined plane

    

         By resolving P in the direction of the plane and perpendicular to the plane, we get:

      

         For the condition of equilibrium,

$
\begin{aligned}
& R+P \sin \alpha=W \cos \lambda \Rightarrow R=W \cos \lambda-P \sin \alpha \\
& F=P \cos \alpha+W \sin \lambda
\end{aligned}
$


By substituting these values in $F=\mu R$, we get:

$
P=\frac{W \sin (\theta-\lambda)}{\cos (\alpha-\theta)}
$


Where $\theta$ is the angle of friction such that, $\mu=\tan \theta$

Calculation of Required force in different situations(3)
  • Case 5:- Minimum force to avoid sliding of a body down on an inclined plane    

      

As the block has tendency to slip downward, friction force will act up the incline. For the minimum value of P, the friction force is limiting and the block is in equilibrium.

         Free Body Diagram of the block-

      

       

For the condition of equilibrium-

$
\begin{aligned}
& \mathrm{R}+\mathrm{P} \sin \alpha=\mathrm{mg} \cos \lambda \\
& \Rightarrow \mathrm{R}=\mathrm{mg} \cos \lambda-\mathrm{P} \sin \alpha \\
& \text { Limiting friction }- \\
& \mathrm{f}_{\mathrm{l}}=\mu \mathrm{R} \\
& \Rightarrow f_l=\mu(m g \cos \lambda-P \sin \alpha) \ldots \ldots(1) \\
& f_l=m g \sin \lambda-P \cos \alpha \ldots(2) \\
& \text { From equation (1) and (2)- } \\
& m g \sin \lambda-P \cos \alpha=\mu(m g \cos \lambda-P \sin \alpha) \\
& \theta \rightarrow \operatorname{angle} \text { of friction } \\
& \mu=\tan \theta \\
& \mathrm{P}(\cos \alpha-\tan \theta \sin \alpha)=\mathrm{mg}(\sin \lambda-\tan \theta \cos \lambda) \\
& \Rightarrow P=\frac{m g \sin (\theta-\lambda)}{\cos (\theta+\alpha)}
\end{aligned}
$
 

 

Calculation of Required force in different situations(4)

 

  • Case 6:- Minimum Force of Motion along the horizontal surface and its direction

        

Let the force P be applied at an angle α with the horizontal.

Let the friction force on the block be F.

F.B.D of the block-

                  For vertical equilibrium,

       

$
\begin{aligned}
& \mathrm{R}+\mathrm{P} \sin \alpha=\mathrm{mg} \\
& \Rightarrow \therefore \mathrm{R}=\mathrm{mg}-\mathrm{Psin} \alpha
\end{aligned}
$

and for horizontal motion,

$
\mathrm{P} \cos \alpha \geq \mathrm{F} \Rightarrow \mathrm{P} \cos \alpha \geq \mu \mathrm{R}
$


Substituting the value of $R$, we get:-

$
\begin{aligned}
\mathrm{P} \cos \alpha & \geq \mu(\mathrm{mg}-\mathrm{P} \sin \alpha) \\
\Rightarrow \mathrm{P} & \geq \frac{\mu \mathrm{mg}}{\cos \alpha+\mu \sin \alpha}
\end{aligned}
$


For the force P to be minimum $(\cos \alpha+\mu \sin \alpha)$ must be maximum i.e.,

$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} \alpha}[\cos \alpha+\mu \sin \alpha]=0 \\
& \Rightarrow-\sin \alpha+\mu \cos \alpha=0 \\
& \therefore \tan \alpha=\mu \\
& \Rightarrow \alpha=\tan ^{-1}(\mu)=\text { angle of friction. }
\end{aligned}
$

i.e. For the minimum value of $P$, its angle from the horizontal should be equal to the angle of friction.
$\mathrm{As} \tan \alpha=\mu$, so from the figure,

       

$
\sin \alpha=\frac{\mu}{\sqrt{1+\mu^2}} \quad \operatorname{and} \quad \cos \alpha=\frac{1}{\sqrt{1+\mu^2}}
$


By substituting these values,

$
\begin{aligned}
\mathrm{P} & \geq \frac{\mu \mathrm{mg}}{\frac{1}{\sqrt{1+\mu^2}}+\frac{\mu^2}{\sqrt{1+\mu^2}}} \\
& \Rightarrow \mathrm{P} \geq \frac{\mu \mathrm{mg}}{\sqrt{1+\mu^2}} \\
& \therefore \mathrm{P}_{\min }=\frac{\mu \mathrm{mg}}{\sqrt{1+\mu^2}}
\end{aligned}
$
 

Study it with Videos

Calculation of Required force in different situations(1)
Calculation of Required force in different situations(2)
Calculation of Required force in different situations(3)

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Get Answer to all your questions

Back to top