IIIT Hyderabad B.Tech Merit List 2025 - Check Toppers, Category Wise List

Lagrange's Identity - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • 13 Questions around this concept.

Solve by difficulty

$
\begin{aligned}
&\text { Find the greatest distance of the point }(1,2) \text { from the circle : }\\
&x^2+y^2+4 x-8 y-5=0
\end{aligned}
$

Find $(\vec{a} \times \vec{b})^2$ if $\vec{a} \cdot \vec{b}=2$ and $|\vec{a}|=5$ and $|\vec{b}|=\frac{1}{2}$

Concepts Covered - 2

Lagrange's Identity

$
\begin{aligned}
(\vec{a} \times \vec{b}) \cdot(\vec{c} \times \vec{d}) & =\left|\begin{array}{ll}
\vec{a} \cdot \vec{c} & \vec{a} \cdot \vec{d} \\
\vec{b} \cdot \vec{c} & \vec{b} \cdot \vec{d}
\end{array}\right| \\
& =(\vec{a} \cdot \vec{c})(\vec{b} \cdot \vec{d})-(\vec{a} \cdot \vec{d})(\vec{b} \cdot \vec{c})
\end{aligned}
$

Proof:
Let $\quad(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}) \cdot(\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{d}})=\overrightarrow{\mathbf{u}} \cdot(\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{d}})$ (where $(\vec{a} \times \vec{b})$ )
$
\begin{aligned}
& =\overrightarrow{\mathbf{u}}=(\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{c}}) \cdot \overrightarrow{\mathbf{d}} \\
& =((\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}) \times \overrightarrow{\mathbf{c}}) \cdot \overrightarrow{\mathbf{d}} \\
& =((\overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{a}}) \overrightarrow{\mathbf{b}}-(\overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{b}}) \overrightarrow{\mathbf{a}}) \cdot \overrightarrow{\mathbf{d}} \\
=(\overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{a}})(\vec{b} \cdot \overrightarrow{\mathbf{d}})- & (\overrightarrow{\mathbf{c}} \cdot \vec{b})(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{d}}) \\
=(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{c}})(\vec{b} \cdot \overrightarrow{\mathbf{d}})- & (\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{d}})(\vec{b} \cdot \overrightarrow{\mathbf{c}})
\end{aligned}
$

NOTE:
$
\begin{aligned}
& (\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d})=[(\vec{a} \times \vec{b}) \cdot \vec{d}] \vec{c}-[(\vec{a} \times \vec{b}) \cdot \vec{c}] \vec{d} \\
& =\left[\begin{array}{lll}
\vec{a} & \vec{b} & \vec{d}
\end{array}\right] \vec{c}-\left[\begin{array}{lll}
\vec{a} & \vec{b} & \vec{c}
\end{array}\right] \vec{d}
\end{aligned}
$
$\Rightarrow$ Thus, vector $\overrightarrow{(a} \times \vec{b}) \times(\vec{c} \times \vec{d})$ lies in the plane of $\vec{c}$ and $\vec{d}$

Reciprocal system of Vectors

If we take the dot product of two system of vectors and get unity, then the system is called reciprocal system of vectors.

Thus if $\tilde{\mathrm{a}}, \tilde{\mathrm{b}}$ and $\tilde{\mathrm{c}}$ are three non - coplanar vectors, and if $\overrightarrow{a^{\prime}}=\frac{\vec{b} \times \vec{c}}{\left[\begin{array}{ll}\vec{a} & \vec{b}\end{array}\right]}$, $\overrightarrow{b^{\prime}}=\frac{\vec{c} \times \vec{a}}{\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]}$ and $\overrightarrow{c^{\prime}}=\frac{\vec{a} \times \vec{b}}{\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]}$ then $\overrightarrow{a^{\prime}}, \overrightarrow{b^{\prime}}, \vec{c}$ are said to be the reciprocal systems of vectors for vectors $\vec{a}, \vec{b}$ and $\vec{c}$.

Properties

1. If $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{c}}$ and $\overrightarrow{\mathbf{a}^{\prime}}, \overrightarrow{\mathbf{b}^{\prime}}$ and $\overrightarrow{\mathbf{c}^{\prime}}$ are reciprocal system of vectors, then $\left.\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{a}^{\prime}}=\frac{\overrightarrow{\mathbf{a}} \cdot(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})}{[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]}=\frac{\left[\begin{array}{lll}\overrightarrow{\mathbf{a}} & \overrightarrow{\mathbf{b}} & \overrightarrow{\mathbf{c}}\end{array}\right]}{[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}}} \overrightarrow{\mathbf{c}}\right]$.

Similarly,
$
\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{b}^{\prime}}=\overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{c}^{\prime}}=1
$

Due to the above property, the two systems of vectors are called reciprocal systems.
2. $\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}^{\prime}}=\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{c}^{\prime}}=\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{a}^{\prime}}=\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{c}^{\prime}}=\overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{a}^{\prime}}=\overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{b}^{\prime}}=\mathbf{0}$
3. $\left[\begin{array}{lll}\overrightarrow{\mathbf{a}} & \overrightarrow{\mathrm{b}} & \overrightarrow{\mathbf{c}}\end{array}\right]\left[\begin{array}{lll}\overrightarrow{\mathbf{a}^{\prime}} & \overrightarrow{\mathbf{b}^{\prime}} & \overrightarrow{\mathbf{c}^{\prime}}\end{array}\right]=1$

 Proof:

 We have,
$
\begin{aligned}
{\left[\begin{array}{lll}
\overrightarrow{a^{\prime}} & \overrightarrow{b^{\prime}} & \overrightarrow{c^{\prime}}
\end{array}\right]=\left[\begin{array}{ll}
\vec{b} \times \vec{c} \\
{\left[\begin{array}{lll}
\vec{a} & \vec{b} & \vec{c}
\end{array}\right] \frac{\vec{c} \times \vec{a}}{\left.\left[\begin{array}{lll}
\vec{a} & \vec{b} & \vec{c}
\end{array}\right] \frac{\vec{a} \times \vec{b}}{\left[\begin{array}{ll}
\vec{a} & \vec{b} \\
\vec{c}
\end{array}\right]}\right]}} \\
& =\frac{1}{\left[\begin{array}{lll}
\vec{a} & \vec{b} & \vec{c}
\end{array}\right]^3}\left[\begin{array}{lll}
\vec{b} & \vec{c} & \vec{c} \times \vec{a} \\
& \vec{a} \times \vec{b}
\end{array}\right] \\
& =\frac{1}{\left[\begin{array}{lll}
\vec{a} & \vec{b} & \vec{c}
\end{array}\right]^3}\left[\begin{array}{lll}
\vec{a} & \vec{b} & \vec{c}
\end{array}\right]^2 \\
& =\frac{1}{\left[\begin{array}{lll}
\vec{a} & \vec{b} & \vec{c}
\end{array}\right]} \\
\Rightarrow\left[\begin{array}{lll}
\overrightarrow{a^{\prime}} & \overrightarrow{b^{\prime}} & \vec{c}
\end{array}\right]\left[\begin{array}{lll}
\vec{a} & \vec{b} & \vec{c}
\end{array}\right]=1
\end{array}\right.}
\end{aligned}
$
4. The orthogonal triad of vectors $\hat{\mathbf{i}}, \hat{\mathbf{j}}$ and $\hat{\mathbf{k}}$ is self reciprocal.

5. $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{c}}$ are non-coplanar iff $\overrightarrow{\mathbf{a}^{\prime}}, \overrightarrow{\mathbf{b}^{\prime}}$ and $\overrightarrow{\mathbf{c}^{\prime}}$ are non-coplanar.
$
\text { As }\left[\begin{array}{lll}
\overrightarrow{a^{\prime}} & \overrightarrow{b^{\prime}} & \vec{c}
\end{array}\right]\left[\begin{array}{lll}
\vec{a} & \vec{b} & \vec{c}
\end{array}\right]=1_{\text {and }}\left[\begin{array}{lll}
\vec{a} & \vec{b} & \vec{c}
\end{array}\right] \neq 0 \text { are non-coplanar } \quad \Leftrightarrow \frac{1}{\left[\begin{array}{lll}
\vec{a} & \vec{b} & \vec{c}
\end{array}\right]} \neq 0 \Leftrightarrow\left[\begin{array}{lll}
\overrightarrow{a^{\prime}} & \overrightarrow{b^{\prime}} & \overrightarrow{c^{\prime}}
\end{array}\right]
$
are non-coplanar.

Study it with Videos

Lagrange's Identity
Reciprocal system of Vectors

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Books

Reference Books

Lagrange's Identity

Mathematics for Joint Entrance Examination JEE (Advanced) : Vectors and 3D Geometry

Page No. : 3.47

Line : 2

Reciprocal system of Vectors

Mathematics for Joint Entrance Examination JEE (Advanced) : Vectors and 3D Geometry

Page No. : 3.55

Line : 9

E-books & Sample Papers

Get Answer to all your questions

Back to top