How Many Hours of Study is Required to Crack IIT JEE Main 2025 - Expert Tips

Important Results of Binomial Theorem for any Index - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • Important Results of Binomial Theorem for any Index is considered one the most difficult concept.

  • 47 Questions around this concept.

Solve by difficulty

If the expansion in powers of x of the function  \dpi{100} \frac{1}{(1-ax)(1-bx)}\,\,is\, \,\,a_{0}+a_{1}x+a_{2}x^{2}+a_{3}x^{3}+.......,\, then\; a_{n}\; is :

If 0 < x < 1, then the first negative term in the expansion of \dpi{100} (1+x)^{41/7} is:

Concepts Covered - 1

Important Results of Binomial Theorem for any Index

Important Results of Binomial Theorem for any  index

If the given series is

$
(1+\mathrm{x})^{\mathrm{n}}=1+\mathrm{nx}+\frac{\mathrm{n}(\mathrm{n}-1)}{2!} \mathrm{x}^2+\frac{\mathrm{n}(\mathrm{n}-1)(\mathrm{n}-2)}{3!} \mathrm{x}^3+\ldots \ldots+\frac{\mathrm{n}(\mathrm{n}-1)(\mathrm{n}-2) \ldots \ldots(\mathrm{n}-\mathrm{r}+1)}{\mathrm{r}!} \mathrm{x}^{\mathrm{r}} \ldots . .
$
In the above expansion replace ' $n$ ' with ' $-n$ '

$
\begin{aligned}
&(1+\mathrm{x})^{-\mathrm{n}}=1+(-\mathrm{n}) \mathrm{x}+\frac{(-\mathrm{n})((-\mathrm{n})-1)}{2!} \mathrm{x}^2+\frac{(-\mathrm{n})((-\mathrm{n})-1)((-\mathrm{n})-2)}{3!} \mathrm{x}^3+\ldots \ldots \\
& \ldots+\frac{(-\mathrm{n})((-\mathrm{n})-1)((-\mathrm{n})-2) \ldots . \cdot((-\mathrm{n})-\mathrm{r}+1)}{\mathrm{r}!} \mathrm{x}^{\mathrm{r}} \ldots \ldots \ldots \infty \\
& \Rightarrow(1+\mathrm{x})^{-\mathrm{n}}= 1-\mathrm{nx}+\frac{\mathrm{n}(\mathrm{n}+1)}{2!} \mathrm{x}^2-\frac{\mathrm{n}(\mathrm{n}+1)(\mathrm{n}+2)}{3!} \mathrm{x}^3+\ldots \ldots \\
& \ldots+(-1)^{\mathrm{r}} \frac{\mathrm{n}(\mathrm{n}+1)(\mathrm{n}+2) \ldots \ldots(\mathrm{n}+\mathrm{r}-1)}{\mathrm{r}!} \mathrm{x}^{\mathrm{r}} \ldots \ldots \ldots \infty
\end{aligned}
$
If -n is a negative integer (so that n is a positive integer), then we can re-write this expression as

$
=1-{ }^n C_1 x+{ }^{n+1} C_2 x^2-{ }^{n+2} C_3 x^3+\cdots+{ }^{n+r-1} C_r(-x)^r+\cdots
$

Now replace ' $x$ ' with ' $-x$ ' and ' $n$ ' with ' $-n$ ' in the binomial expansion $(1+x)^n$.

$
\begin{aligned}
& (1-x)^{-n}=1+n x+\frac{n(n+1)}{2!} x^2+\frac{n(n+1)(n+2)}{3!} x^3+\cdots \\
& +\frac{n(n+1)(n+2) \cdots(n+r-1)}{r!} x^r+\cdots
\end{aligned}
$
If -n is a negative integer (so that n is a positive integer), then we can re-write this expression as

$
=1+{ }^n C_1 x+{ }^{n+1} C_2 x^2+{ }^{n+2} C_3 x^3+\cdots+{ }^{n+r-1} C_r(x)^r+\cdots
$
Important Note:
The coefficient of $x^r$ in $(1-x)^{-n}$, (when $n$ is a natural number) is ${ }^{n+r-1} C_r$

Some Important Binomial Expansion
1. $(1+x)^{-1}=1-x+x^2-x^3+\cdots$
2. $(1-x)^{-1}=1+x+x^2+x^3+\cdots$
3. $(1+x)^{-2}=1-2 x+3 x^2-4 x^3+\cdots$
4. $(1-x)^{-2}=1+2 x+3 x^2+4 x^3+\cdots$

Study it with Videos

Important Results of Binomial Theorem for any Index

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Get Answer to all your questions

Back to top