Amity University Noida B.Tech Admissions 2025
ApplyAmong Top 30 National Universities for Engineering (NIRF 2024)
Important Results of Binomial Theorem for any Index is considered one the most difficult concept.
47 Questions around this concept.
If the expansion in powers of of the function :
If 0 < < 1, then the first negative term in the expansion of is:
Important Results of Binomial Theorem for any index
If the given series is
$
(1+\mathrm{x})^{\mathrm{n}}=1+\mathrm{nx}+\frac{\mathrm{n}(\mathrm{n}-1)}{2!} \mathrm{x}^2+\frac{\mathrm{n}(\mathrm{n}-1)(\mathrm{n}-2)}{3!} \mathrm{x}^3+\ldots \ldots+\frac{\mathrm{n}(\mathrm{n}-1)(\mathrm{n}-2) \ldots \ldots(\mathrm{n}-\mathrm{r}+1)}{\mathrm{r}!} \mathrm{x}^{\mathrm{r}} \ldots . .
$
In the above expansion replace ' $n$ ' with ' $-n$ '
$
\begin{aligned}
&(1+\mathrm{x})^{-\mathrm{n}}=1+(-\mathrm{n}) \mathrm{x}+\frac{(-\mathrm{n})((-\mathrm{n})-1)}{2!} \mathrm{x}^2+\frac{(-\mathrm{n})((-\mathrm{n})-1)((-\mathrm{n})-2)}{3!} \mathrm{x}^3+\ldots \ldots \\
& \ldots+\frac{(-\mathrm{n})((-\mathrm{n})-1)((-\mathrm{n})-2) \ldots . \cdot((-\mathrm{n})-\mathrm{r}+1)}{\mathrm{r}!} \mathrm{x}^{\mathrm{r}} \ldots \ldots \ldots \infty \\
& \Rightarrow(1+\mathrm{x})^{-\mathrm{n}}= 1-\mathrm{nx}+\frac{\mathrm{n}(\mathrm{n}+1)}{2!} \mathrm{x}^2-\frac{\mathrm{n}(\mathrm{n}+1)(\mathrm{n}+2)}{3!} \mathrm{x}^3+\ldots \ldots \\
& \ldots+(-1)^{\mathrm{r}} \frac{\mathrm{n}(\mathrm{n}+1)(\mathrm{n}+2) \ldots \ldots(\mathrm{n}+\mathrm{r}-1)}{\mathrm{r}!} \mathrm{x}^{\mathrm{r}} \ldots \ldots \ldots \infty
\end{aligned}
$
If -n is a negative integer (so that n is a positive integer), then we can re-write this expression as
$
=1-{ }^n C_1 x+{ }^{n+1} C_2 x^2-{ }^{n+2} C_3 x^3+\cdots+{ }^{n+r-1} C_r(-x)^r+\cdots
$
Now replace ' $x$ ' with ' $-x$ ' and ' $n$ ' with ' $-n$ ' in the binomial expansion $(1+x)^n$.
$
\begin{aligned}
& (1-x)^{-n}=1+n x+\frac{n(n+1)}{2!} x^2+\frac{n(n+1)(n+2)}{3!} x^3+\cdots \\
& +\frac{n(n+1)(n+2) \cdots(n+r-1)}{r!} x^r+\cdots
\end{aligned}
$
If -n is a negative integer (so that n is a positive integer), then we can re-write this expression as
$
=1+{ }^n C_1 x+{ }^{n+1} C_2 x^2+{ }^{n+2} C_3 x^3+\cdots+{ }^{n+r-1} C_r(x)^r+\cdots
$
Important Note:
The coefficient of $x^r$ in $(1-x)^{-n}$, (when $n$ is a natural number) is ${ }^{n+r-1} C_r$
Some Important Binomial Expansion
1. $(1+x)^{-1}=1-x+x^2-x^3+\cdots$
2. $(1-x)^{-1}=1+x+x^2+x^3+\cdots$
3. $(1+x)^{-2}=1-2 x+3 x^2-4 x^3+\cdots$
4. $(1-x)^{-2}=1+2 x+3 x^2+4 x^3+\cdots$
"Stay in the loop. Receive exam news, study resources, and expert advice!"