UPES B.Tech Admissions 2025
ApplyRanked #42 among Engineering colleges in India by NIRF | Highest CTC 50 LPA , 100% Placements
Geometrical Interpretation of Vector product is considered one of the most asked concept.
12 Questions around this concept.
A particle is acted upon by constant forces which displace it from a point to the point . The work done in standard units by the forces is given by
Let $\vec{a}=4 \hat{i}+3 \hat{j}+5 \hat{k}$ and $\vec{\beta}=\hat{i}+2 \hat{j}-4 \hat{k}$, Let $\vec{\beta}_1$ be parallel to $\vec{a}$ and $\vec{\beta}_2$ be perpendicular to $\vec{a}$.If $\vec{\beta}=\vec{\beta}_1+\vec{\beta}_2$, then the value of $5 \vec{\beta}_2 \cdot(\hat{i}+\hat{j}+\hat{k})_{\text {is }}$
If and
Then is equal to
Also Check: Crack JEE Main 2025 - Join Our Free Crash Course Now!
JEE Main 2025: Sample Papers | Syllabus | Mock Tests | PYQs | Video Lectures
JEE Main 2025: Preparation Guide | High Scoring Topics | Study Plan 100 Days
Let for a triangle ABC,
If and the area of the triangle is , then is equal to
Area of Parallelogram
If and , are two non-zero, non-parallel vectors represented by AD and AB respectively and let Ө be the angle between them.
$$
\begin{aligned}
& \text { In } \triangle \mathrm{ADE}, \quad \sin \theta=\frac{D E}{A D} \\
& \Rightarrow \quad D E=A D \sin \theta=|\overrightarrow{\mathbf{a}}| \sin \theta \\
& \text { Area of parallelogram } \mathrm{ABCD}=\mathrm{AB} \cdot \mathrm{DE} \\
& \text { Thus, } \\
& \text { Area of parallelogram } \mathrm{ABCD}=|\vec{b}||\vec{a}| \sin \theta=|\vec{a} \times \vec{b}|
\end{aligned}
$$
Area of Triangle
If $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$, are two non-zero, non-parallel vectors represented as the adjacent sides of a triangle then its area is given as $\frac{1}{2}|\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}|$
The area of a triangle is ½ (Base) x (Height)
From the figure,
Area of triangle $\mathrm{ABC}=\frac{1}{2} \mathrm{AB} \cdot \mathrm{CD}$
But $\mathrm{AB}=|\overrightarrow{\mathbf{b}}|$ (as given), and $\mathrm{CD}=|\overrightarrow{\mathbf{a}}| \sin \theta$
Thus, Area of triangle $\mathrm{ABC}=\frac{1}{2}|\overrightarrow{\mathbf{b}}||\overrightarrow{\mathbf{a}}| \sin \theta=\frac{1}{2}|\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}|$
NOTE:
1. The area of a parallelogram with diagonals $\overrightarrow{\mathbf{d}}_1$ and $\overrightarrow{\mathbf{d}}_2$ is $\frac{1}{2}\left|\overrightarrow{\mathbf{d}}_1 \times \overrightarrow{\mathbf{d}}_2\right|$.
2. The area of a plane quadrilateral $A B C D$ with AC and BD as diagonal is $\frac{1}{2}|\overrightarrow{\mathbf{A C}} \times \overrightarrow{\mathbf{B D}}|$.
3. If $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{c}}$ are position vectors of a $\triangle A B C$, then its area is $\frac{1}{2}|(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}})+(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})+(\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}})|$.
"Stay in the loop. Receive exam news, study resources, and expert advice!"