Amity University Noida B.Tech Admissions 2025
ApplyAmong Top 30 National Universities for Engineering (NIRF 2024)
Geometrical Interpretation of Vector product is considered one of the most asked concept.
17 Questions around this concept.
Let $\overrightarrow{\mathrm{OA}}=2 \overrightarrow{\mathrm{a}}, \overrightarrow{\mathrm{OB}}=6 \overrightarrow{\mathrm{a}}+5 \overrightarrow{\mathrm{b}}$ and $\overrightarrow{\mathrm{OC}}=3 \overrightarrow{\mathrm{b}}$, where $O$ is the origin. If the area of the parallelogram with adjacent sides $\overrightarrow{\mathrm{OA}}$ and $\overrightarrow{\mathrm{OC}}$ is 15 sq. units, then the area (in sq. units) of the quadrilateral $\mathrm{OABC}$ is equal to :
Area of Parallelogram
If $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$, are two non-zero, non-parallel vectors represented by $A D$ and $A B$ respectively and let $\Theta$ be the angle between them.
$
\begin{aligned}
& \text { In } \triangle \mathrm{ADE}, \quad \sin \theta=\frac{D E}{A D} \\
& \Rightarrow \quad D E=A D \sin \theta=|\overrightarrow{\mathbf{a}}| \sin \theta \\
& \text { Area of parallelogram } \mathrm{ABCD}=\mathrm{AB} \cdot \mathrm{DE} \\
& \text { Thus, } \\
& \text { Area of parallelogram } \mathrm{ABCD}=|\vec{b}||\vec{a}| \sin \theta=|\vec{a} \times \vec{b}|
\end{aligned}
$
Area of Triangle
If $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$, are two non-zero, non-parallel vectors represented as the adjacent sides of a triangle then its area is given as $\frac{1}{2}|\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}|$
The area of a triangle is ½ (Base) x (Height)
From the figure,
Area of triangle $\mathrm{ABC}=\frac{1}{2} \mathrm{AB} \cdot \mathrm{CD}$
But $\mathrm{AB}=|\overrightarrow{\mathbf{b}}|$ (as given), and $\mathrm{CD}=|\overrightarrow{\mathbf{a}}| \sin \theta$
Thus, Area of triangle $\mathrm{ABC}=\frac{1}{2}|\overrightarrow{\mathbf{b}}||\overrightarrow{\mathbf{a}}| \sin \theta=\frac{1}{2}|\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}|$
NOTE:
1. The area of a parallelogram with diagonals $\overrightarrow{\mathbf{d}}_1$ and $\overrightarrow{\mathbf{d}}_2$ is $\frac{1}{2}\left|\overrightarrow{\mathbf{d}}_1 \times \overrightarrow{\mathbf{d}}_2\right|$.
2. The area of a plane quadrilateral $A B C D$ with AC and BD as diagonal is $\frac{1}{2}|\overrightarrow{\mathbf{A C}} \times \overrightarrow{\mathbf{B D}}|$.
3. If $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{c}}$ are position vectors of a $\triangle A B C$, then its area is $\frac{1}{2}|(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}})+(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})+(\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}})|$.
"Stay in the loop. Receive exam news, study resources, and expert advice!"