Amity University Noida B.Tech Admissions 2025
ApplyAmong Top 30 National Universities for Engineering (NIRF 2024) | 30+ Specializations | AI Powered Learning & State-of-the-Art Facilities
16 Questions around this concept.
If the equation $3 x^2+4 x+1=0$ and $a x^2+b x+c=0$ have both the root common, then $a: b: c$ is
We consider two-equation and try to find the conditions for roots to be common among them
Let the equations be $\mathrm{a}_1 \mathrm{x}^2+\mathrm{b}_1 \mathrm{x}+\mathrm{c}_1=0$ and $\mathrm{a}_2 \mathrm{x}^2+\mathrm{b}_2 \mathrm{x}+\mathrm{c}_2=0$
Only one common root:
Let ? be the common root, so it will satisfy both the equations
This, $\mathrm{a}_1 \alpha^2+\mathrm{b}_1 \alpha+\mathrm{c}_1=0$ and $\mathrm{a}_2 \alpha^2+\mathrm{b}_2 \alpha+\mathrm{c}_2=0$
In solving these two equations using the multiplication method, we get
$
\begin{aligned}
& \frac{\alpha^2}{\mathrm{~b}_1 \mathrm{c}_2-\mathrm{b}_2 \mathrm{c}_1}=\frac{\alpha}{\mathrm{c}_1 \mathrm{a}_2-\mathrm{c}_2 \mathrm{a}_1}=\frac{1}{\mathrm{a}_1 \mathrm{~b}_2-\mathrm{a}_2 \mathrm{~b}_1} \\
& \Rightarrow \alpha^2=\frac{\mathrm{b}_1 \mathrm{c}_2-\mathrm{b}_2 \mathrm{c}_1}{\mathrm{a}_1 \mathrm{~b}_2-\mathrm{a}_2 \mathrm{~b}_1}
\end{aligned}
$
and,
$
\Rightarrow \alpha=\frac{\mathrm{c}_1 \mathrm{a}_2-\mathrm{c}_2 \mathrm{a}_1}{\mathrm{a}_1 \mathrm{~b}_2-\mathrm{a}_2 \mathrm{~b}_1}
$
from the above equations, we can write
$
\begin{aligned}
& \Rightarrow \frac{\mathrm{b}_1 \mathrm{c}_2-\mathrm{b}_2 \mathrm{c}_1}{\mathrm{a}_1 \mathrm{~b}_2-\mathrm{a}_2 \mathrm{~b}_1}=\left(\frac{\mathrm{c}_1 \mathrm{a}_2-\mathrm{c}_2 \mathrm{a}_1}{\mathrm{a}_1 \mathrm{~b}_2-\mathrm{a}_2 \mathrm{~b}_1}\right)^2 \\
& \Rightarrow\left(\mathbf{b}_{\mathbf{1}} \mathbf{c}_{\mathbf{2}}-\mathbf{b}_{\mathbf{2}} \mathbf{c}_{\mathbf{1}}\right)\left(\mathbf{a}_{\mathbf{1}} \mathbf{b}_{\mathbf{2}}-\mathbf{a}_{\mathbf{2}} \mathbf{b}_{\mathbf{1}}\right)=\left(\mathbf{c}_{\mathbf{1}} \mathbf{a}_{\mathbf{2}}-\mathbf{c}_{\mathbf{2}} \mathbf{a}_{\mathbf{1}}\right)^{\mathbf{2}}
\end{aligned}
$
This is the condition required for a root to be common to both quadratic equations.
The common root is given by,
$
\alpha=\frac{b_1 c_2-b_2 c_1}{a_1 b_2-a_2 b_1}=\frac{c_1 a_2-c_2 a_1}{a_1 b_2-a_2 b_1}
$
The common root can also be found using the method given below :
First, make the coefficient of x2the same in two given quadratic equations.
Now, subtract the two equations
Use the relation between their roots and coefficients to find the roots of other equations.
Both roots are common :
Let ? and ? be the common roots of the equations
$
\mathrm{a}_1 \mathrm{x}^2+\mathrm{b}_1 \mathrm{x}+\mathrm{c}_1=0 \text { and } \mathrm{a}_2 \mathrm{x}^2+\mathrm{b}_2 \mathrm{x}+\mathrm{c}_2=0
$
Then, both the equation are identical, hence
$
\frac{\mathrm{a}_1}{\mathrm{a}_2}=\frac{\mathrm{b}_1}{\mathrm{~b}_2}=\frac{\mathrm{c}_1}{\mathrm{c}_2}
$
"Stay in the loop. Receive exam news, study resources, and expert advice!"