Amity University, Mumbai B.Tech Admissions 2025
ApplyRanked amongst top 3% universities globally (QS Rankings)
6 Questions around this concept.
In $\triangle P Q R_{\text {, if }} P Q \cdot Q R=3, P Q \cdot P R=4$ and $\cos (P-Q)=\frac{3}{4}$ then
An isosceles triangle of vertical angle $2 \theta$ is inscribed in a circle of radius a. Then the area of triangle is maximum when $\theta=$ ?
Circumcircle of a Triangle
The circumcircle of triangle ABC is the unique circle passing through the three vertices A, B, and C. Its centre, the circumcenter O, is the intersection of the perpendicular bisectors of the three sides. The circumradius is always denoted by R.
The radius of the circumcircle of a ΔABC, R is given by the law of sines:
$\mathrm{R=\frac{\mathit{a}}{2\sin A}=\frac{\mathit{b}}{2\sin B}=\frac{\mathit{c}}{2\sin C}}$
The perpendicular bisector of the sides AB, BC and CA intersects at point O. So, O is the circumcentre and
$
O A=O B=O C=R
$
Let D be the midpoint of BC .
$
\begin{aligned}
& \angle \mathrm{BOC}=2 \angle \mathrm{BAC}=2 \mathrm{~A} \\
& \angle \mathrm{BOD}=\angle \mathrm{COD}=\mathrm{A}
\end{aligned}
$
So, in $\triangle O B D$,
$
\begin{aligned}
& \sin \mathrm{A}=\frac{\mathrm{BD}}{\mathrm{OB}}=\frac{a / 2}{\mathrm{R}}=\frac{a}{2 \mathrm{R}} \\
& \Rightarrow \mathrm{R}=\frac{a}{2 \sin \mathrm{~A}}
\end{aligned}
$
similarly,
$\mathrm{R}=\frac{b}{2 \sin \mathrm{~B}}$ and $\mathrm{R}=\frac{c}{2 \sin \mathrm{C}}$
$R$ can also be written in terms of the area of the triangle
Area of $\triangle A B C$,
$\Delta=\frac{1}{2} b \cdot \mathrm{c} \sin \mathrm{A}$
$\Rightarrow \sin \mathrm{A}=\frac{2 \Delta}{b c}$
and, $\mathrm{R}=\frac{a}{2 \sin \mathrm{~A}}$
From (i) and (ii)
$
\mathrm{R}=\frac{a b c}{4 \Delta}
$
"Stay in the loop. Receive exam news, study resources, and expert advice!"