JEE Main Eligibility Marks in 12th Subject Wise 2025 – Check Minimum Marks Criteria

Circumcircle of a Triangle - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • 6 Questions around this concept.

Solve by difficulty

In $\triangle P Q R_{\text {, if }} P Q \cdot Q R=3, P Q \cdot P R=4$ and $\cos (P-Q)=\frac{3}{4}$ then

 

 

An isosceles triangle of vertical angle $2 \theta$ is inscribed in a circle of radius a. Then the area of triangle is maximum when $\theta=$ ?

Concepts Covered - 1

Circumcircle of a Triangle

Circumcircle of a Triangle

The circumcircle of triangle ABC is the unique circle passing through the three vertices A, B, and C. Its centre, the circumcenter O, is the intersection of the perpendicular bisectors of the three sides. The circumradius is always denoted by R. 

The radius of the circumcircle of a ΔABC, R is given by the law of sines:

$\mathrm{R=\frac{\mathit{a}}{2\sin A}=\frac{\mathit{b}}{2\sin B}=\frac{\mathit{c}}{2\sin C}}$

The perpendicular bisector of the sides AB, BC and CA intersects at point O. So, O is the circumcentre and

$
O A=O B=O C=R
$
Let D be the midpoint of BC .

$
\begin{aligned}
& \angle \mathrm{BOC}=2 \angle \mathrm{BAC}=2 \mathrm{~A} \\
& \angle \mathrm{BOD}=\angle \mathrm{COD}=\mathrm{A}
\end{aligned}
$
So, in $\triangle O B D$,

$
\begin{aligned}
& \sin \mathrm{A}=\frac{\mathrm{BD}}{\mathrm{OB}}=\frac{a / 2}{\mathrm{R}}=\frac{a}{2 \mathrm{R}} \\
& \Rightarrow \mathrm{R}=\frac{a}{2 \sin \mathrm{~A}}
\end{aligned}
$

similarly,
$\mathrm{R}=\frac{b}{2 \sin \mathrm{~B}}$ and $\mathrm{R}=\frac{c}{2 \sin \mathrm{C}}$
$R$ can also be written in terms of the area of the triangle
Area of $\triangle A B C$,
$\Delta=\frac{1}{2} b \cdot \mathrm{c} \sin \mathrm{A}$
$\Rightarrow \sin \mathrm{A}=\frac{2 \Delta}{b c}$
and, $\mathrm{R}=\frac{a}{2 \sin \mathrm{~A}}$
From (i) and (ii)

$
\mathrm{R}=\frac{a b c}{4 \Delta}
$

Study it with Videos

Circumcircle of a Triangle

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Books

Reference Books

Circumcircle of a Triangle

Mathematics for Joint Entrance Examination JEE (Advanced) : Trigonometry

Page No. : 5.17

Line : 34

E-books & Sample Papers

Get Answer to all your questions

Back to top