How to Prepare for AP EAMCET with JEE Main 2026 - Detailed Study Plan

Binomial Inside Binomial - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • 8 Questions around this concept.

Solve by difficulty

If (1+x)^{n}=C_{0}+C_{1} x \ldots\ldots +C_{n} x^{n}, then C_{0} \cdot^{2 n} C_{n}-C_{1} \cdot^{2 n-1} C_{n}+C_{2} \cdot^{2 n-2} C_{n}-C_{3} \cdot^{2 n-3} C_{n}+\ldots+(-1)^{n} C_{n} \cdot^{n} C_{n}

is equal to

The value of { }^{50} C_4+\sum_{r=1}^6{ }^{56-r} C_3 is

Concepts Covered - 1

Binomial Inside Binomial

Upper Index variable

Let's see some examples to understand how to solve such types of questions

How do we find the summation of the series where the upper index also varies

$
\sum_{\text {e.g., }}^{n=0}{ }^{n+r} C_r={ }^n C_0+{ }^{n+1} C_1+{ }^{n+2} C_2+\cdots+{ }^{n+n} C_n
$

[put value of $r=0,1,2, \ldots \ldots$,upto $n$ ]
By using the property of the binomial coefficient

$
\begin{aligned}
& { }^n C_r={ }^n C_{n-r} \\
& \sum_{\mathrm{r}=0}^{\mathrm{n}}{ }^{\mathrm{n}+\mathrm{r}} \mathrm{C}_{\mathrm{r}}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{n}}+{ }^{\mathrm{n}+1} \mathrm{C}_{\mathrm{n}}+{ }^{\mathrm{n}+2} \mathrm{C}_{\mathrm{n}}+\cdots+{ }^{2 \mathrm{n}} \mathrm{C}_{\mathrm{n}}
\end{aligned}
$
Now as ${ }^n C_n={ }^{n+1} C_{n+1}=1$, so we can write

$
\sum_{\mathrm{r}=0}^{\mathrm{n}}{ }^{\mathrm{n}+\mathrm{r}} \mathrm{C}_{\mathrm{r}}={ }^{\mathrm{n}+1} \mathrm{C}_{\mathrm{n}+1}+{ }^{\mathrm{n}+1} \mathrm{C}_{\mathrm{n}}+{ }^{\mathrm{n}+2} \mathrm{C}_{\mathrm{n}}+\cdots+{ }^{2 \mathrm{n}} \mathrm{C}_{\mathrm{n}}
$
Now first 2 terms can be combined by using the property.

$
\begin{aligned}
& { }^n C_r+{ }^n C_{r-1}={ }^{n+1} C_r \\
& \sum_{\mathrm{r}=0}^{\mathrm{n}}{ }^{\mathrm{n}+\mathrm{r}} \mathrm{C}_{\mathrm{r}}={ }^{\mathrm{n}+2} \mathrm{C}_{\mathrm{n}+1}+{ }^{\mathrm{n}+2} \mathrm{C}_{\mathrm{n}}+\cdots+{ }^{2 \mathrm{n}} \mathrm{C}_{\mathrm{n}}
\end{aligned}
$

Now first two terms can again be combined using the same property, and this process can be continued till the last term is also combined $={ }^{2 n+1} C_{n+1}$

Study it with Videos

Binomial Inside Binomial

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Get Answer to all your questions